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The natural water system




—

—.—r::-::

Tasi

The human water system
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Water as vital resource
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Protection from floods and droughts




Hydrology and humans |
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2012-2015 California drought
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Hydrology and humans

Millennium drought leading to
2010-2011 Queensland floods |
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Reservoirs in the world

Global rivers impacted by reservoirs (red) in 1900

Number of reservoirs Total storage in km3
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Improve understanding

* Models that can mimic large
scale water dynamics

* Are computationally efficient

* Can improve insight into the
hydrological cycle at large
scales

* Physically constrained



What we need to odel the global hydrology
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The history of global hydrological modelling

Model line
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The history of global hydrological modelling




The history of global hydrological modelling
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Pushing the boundaries
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Pushing the boundaries
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Pushing the boundaries
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Vision and progress
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Global hydrological modelling with PCR-GLOBWB

Irrigation  Livestock Industrlal Domestic

Model resolution:
 Regular grid of 0.5° (50 km), 0.1 ° (10 km), 0.01 ° (1 km)
* Daily time step

Model includes:

* Human water interactions
*  Groundwater pumping
. Irrigation
*  Surface water abstraction
* Lakes and reservoirs E

canopy

* Flood plains
e 2D groundwater flow
* Coupling with hydrodynamic models |

* Water temperature Reservoirs

Oﬁh:\nnal
Sutanudjaja et al, 2018, GMD



How does it work?
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Simulating global water temperatures
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Water temperature (Celcius)
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Wanders et al (2019), WRR



Validation is key

Correlation with observations (5Min) Kling-Gupta Efficiency (05min)

H 2
200 Catchment size (km?) <1010°
\ .
<10%10 <25%10°

3
<25 *103 300} <50%10° h
600 <ig;1(1)03 | <100 % 10°
- ;
* : <250 10°
<250 %10

>250%10° =250 %10° i
500 —
400 B . l n

300F . .
- I r

100

N

wu

o
T

Frequency

Frequency
[ N
u o
o o
1 1
| |

[
o
o

un
o
T
!

10 ~05 0.0 05 1.0 ~1.0 —0.5 0.0 0.5 1.0
Value Value



Validation is key

Correlation with observations (05min)




Global water temperature trends

Watertemperature trends
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Validation
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Validation
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Models matter

Correlation Coefficient
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Hyper-resolution modelling
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July, 2002 (1/4 degree)

~25km x 25 km

Chaney et al., HESS, 2018



er-resolution modelling

LAI simulation

Landsat (Visual)

Chaney et al., HESS, 2018



Resolution matters

Maxwell et al, GMD, 2015



Making invisible water flow visible
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Making invisible water consumption visible
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Making invisible water consumption visible

. “5i, paaeetas v -North China ’
Central Valley, ' ) SR TR Plain i :
California us ngh Plain . *\- W n 'i',,a:s. N\,
e " ,.-. e : ﬂﬁ‘:’;‘ b
u South Korea
ir
e
Japan
& J Vietnam
Mexico e ﬁ;jf.‘tf"’“ TS
F -I"
Coastal Pery ===, e }:“‘
. W Java, Indonesia
Water gap e - _
-
2010-2019 [m] )
Lo .
Bl 0.015-0.1 Bﬁ*:, . e
Bm0.1-0.3 S (|

Central Chile Murray-Darling -
> 0.3 :




Human impact on global water resources

Human impact on drought
severity in the 21st century

. Very likely decrease
. Likely decrease
No change
. Likely increase
. Very likely increase

Wanders and Wada, JOH, 2015
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Trends in global water temperatures

Change in annual water temperature (Celcius per Decade)
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Wanders et al (2019), WRR



Visible impacts on fish species

1.5°C 2000 32°C 4.5°C

Barbarossa et al. (2021), Nature com



Visible impacts on global security
Search for actors, conflicts, countries... _ FATALITIES VIEW
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Bridging to new communities, drought and conflict

SSP2-RCP4.5 SSP3-RCP6.0

SSP1-RCP2.6

De Bruin et al 2022, GEC, Hoch et al 2021, ERL



Offshore fresh groundwater resources visible
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Linking hydrology to vegetation
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Making visible global hotspot of water scarcity

WRI Aqueduct water risk atlas



Providing information on climate projections
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PCR-GLOBWB Applications — Water2Invest
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PCR-GLOBWRB Application — flood analyzer

AQUEDUCT Global Flood Analyzer

10 year protection Type or select a country, basin or state, and start to assess flood risks O
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PCR-GLOBWB Application — World Water Map
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The limits of large-scale simulations

* Validation
e Often not validated against local observations

 Not as accurate as local simulations
e Often no calibration
e Often use global forcing data

* Processes not included
e Often only include the main hydrological fluxes



The opportunities

* Available globally
 Historic simulations
* Future projections

* Suitable for large catchments

* Ability to compare regions
* Models have similar configurations
e Often no calibration




PCR-GLOBWB general properties and options

* Runs on all operating systems

* Core is Python2.x and 3.x

* Input and output are NetCDF formats

* Scripts available that allows for local setups

* Input data online (https://doi.org/10.4121/uuid:e3ead32c-0c7d-4762-a781-744dbdd9a94b)

e Qutput online (https://doi.org/10.4121/uuid:e3ead32c-0c7d-4762-a781-744dbdd9a94b)

e Documentation (https://doi.org/10.5194/gmd-11-2429-2018)
e Code(https://github.com/UU-Hydro/PCR-GLOBWB model)



https://doi.org/10.4121/uuid:e3ead32c-0c7d-4762-a781-744dbdd9a94b
https://doi.org/10.4121/uuid:e3ead32c-0c7d-4762-a781-744dbdd9a94b
https://doi.org/10.5194/gmd-11-2429-2018
https://github.com/UU-Hydro/PCR-GLOBWB_model

PCR-GLOBWSB - Users around the world




PCR-GLOBWB open source

UU-Hydro / PCR-GLOBWB_model @Watch 10 S Star 17 | YFork 23
<> Code Issues 0 Pull requests 0 Projects 0 Insights
PCR-GLOBWB (PCRaster Global Water Balance) is a large-scale hydrological model intended for global to regional studies

and developed at the Department of Physical Geography, Utrecht University (Netherlands). Contact: Edwin Sutanudjaja
(E.H.Sutanudjaja@uu.nl).

D 3,987 commits ¥ 1 branch © 2 releases 24 3 contributors s GPL-3.0
Branch: develop v~ Find file
; edwinkost Merge pull request #3 from UU-Hydro/for_public_release_16_jan_2017 -~ Latest commit ffd2b53 on Jan 16, 2017
| config Updating files. a year ago
8 model Updating files. a year ago
B .gitignore Ignore cartesius output job files. 3 years ago
[E) LICENSE replaced user agreement with GPL-3 License 2 years ago
[ README.md Updating README and add LICENSE 2 years ago
E) README.txt Updating README and add LICENSE 2 years ago
[E) known_issues.txt Adding the files from the pcrglobwb git server (v2.0.2_beta). 4 years ago

README.md

PCR-GLOBWB

PCR-GLOBWB (PCRaster Global Water Balance) is a large-scale hydrological model intended for global to regional studies
and developed at the Department of Physical Geography, Utrecht University (Netherlands).

https://github.com/UU-Hydro/PCR-GLOBWB_model



Useful tools for analyzing large scale data

* Python
e Xarray
* Pandas

* Climate Data Operators (CDO)

* NetCDF viewer
* Panoply
* Ncview



Useful tools for analyzing large scale data

% Ncview 2.1.8 0 D %] fUsers/niko/Scripts/nationalGeographic/calibration/runs/calibration_iter3/data/9ac62c35-...
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Useful tools for analyzing large scale data

%| [Users/niko/Scripts/nationalGeographic/calibrationfruns/calibration_iter3/data/9ac62¢c35-...

[ ] 0 |x| discharge from PCR-GLOBWB 2 output (not coupled to MODFLOW), with human f...
| Print| Dump | |

= g
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S

3 s

g

Y -

E =

4

B -
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Useful tools for analyzing large scale data

Home Projects Imprint + Privacy Policy Help

‘, Max-Planck-Institut CDO
J far Meteorologie

Activity News Wiki Forums Files Documentation

Search:

Overview

Climate Data Operators

CDO is a collection of command line Operators to manipulate and analyse Climate and NWP model Data.
Supported data formats are GRIB 1/2, netCDF 3/4, SERVICE, EXTRA and IEG. There are more than 600 operators
available.

Documentation
FAQ
Downloads
Community

Please (7 register yourself for (7 reporting bugs or 7 postings

2 Latest news

Version 2.2.0 released
Added by Uwe Schulzweida 1 day ago

Version 2.1.1 released
Added by Uwe Schulzweida 4 months ago

Version 2.1.0 released
Added by Uwe Schulzweida 6 months ago

Version 2.0.6 released
Added by Uwe Schulzweida 9 months ago

Version 2.0.5 released
Added by Uwe Schulzweida about 1 year ago

View all news

25 Members
Manager: Luis Kornblueh, Ralf Mueller, Uwe Schulzweida

Developer: Dian Putrasahan, Fabian Wachsmann, Irina Fast, Joerg
Wieners, Mathis Rosenhauer, Oliver Heidmann, Ralf Quast, Reinhat

Reporter: Aaron Spring, Brendan DeTracey, David Gobbett, Didier
Sellmann, Jin-Song von Storch, Stefan Fronzek, William Sawyer

Moderator: Estanislao Gavilan, Karin Meier-Fleischer



Useful tools for analyzing large scale data

*|Large scale computational resources
*Enough data storage

*Local expertise

* Remote expertise

* Tutorials



How to get started

* Use data from existing simulations
* Model specific outputs
e Output from large experiments (e.g. ISI-MIP)

* Run a Large Scale model
* Regional or global
e Historic or climate scenarios

Available expertise
Anxajdwo)

* Adjusting existing large scale models
* Add processes
* Add outputs




How to get started

How to install Storage

Variable Units Description
PCR-GLOBWB is developed in Python and uses various supporting packages (e.g. pcraster, numpy and
netcdf4). Therefore, beside the PCR-GLOBWB model code, you will need a working Python package intercaptStor m Canopy intercepted water storage
environment to install the PCR-GLOBWB model. Here we provide a short guide to installing PCR- snowCoverSWE m Snow pack snow water equivalent storage
GLOBWSB. Note that in this installation guide we assume you work on a Linux operating system. snowFreeWater m Show pack free water storage
P h k . ‘t topWaterLayer m Top (ponding) water storage
yt On paC ag e enVI ro n m en storUppTotal m Upper (first) soil layer water storage
Please follow the following steps to setup a PCR-GLOBWB environment: storLowTotal m Lower (second) soil layer water storage
1. To create a Python package environment, we recommend to install Miniconda, particularly for storGroundwater m Non-fossil groundwater storage
Python 3. Follow the Miniconda install instructions given here. A user guide and short reference on SRR E e et - Fossil groundwater storage
the conda package manager can be found here.
surfaceWaterStorage m Surface (rivers, lakes and reservoirs) water storage
2. Now that Miniconda is installed, you can use it to make a package environment. To install the correct totalActivaStorageThickness | m R e e E e e e s D

packages and their versions, we have created an environment file on our GitHub repository. Use the fossile groundwater storage)
environment file to install all required packages to a conda environment:

totalWaterStorageThickness m Total water storage (all of the above)
conda env create ——name pcrglobwb_python3 ——file pcrglobwb_py3.yml satDegUpp m_water.m_capacity- Upper (first) soil layer saturation degree
This will create a environment named pcrglobwb_python3. !
i . satDeglLow m_water.m_capacity- Lower (second) soil layer saturation degree
3. To activate the PCR-GLOBWB environment: 9 1 pacty ( ) Y 9
conda activate pcrglobwb_python3 satDegTotal m_water.m_capacity- Soil saturation degree (upper and lower layers)

1
This will set the current environment to the pcrglobwb_python3 environment

* https://pcrglobwb.readthedocs.io/



How to get started - tips

e Start small

e Look at timeseries

* Double check that your data
represents what you want



Best of both worlds

* DO use large scale hydrological models if:

* You want to study a large region
* Want to compare regions
* Want direct access to data

*Don’t use large scale hydrological models if:

* You work on the <10km resolution
 You want to calibrate
e Work on one catchment




Short Course Large Scale Hydrology
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