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Example: Q100 for the Kamp at Zwettl

from Viglione et al.(2010)

Stift Zwettl

Zwettl

Krumau am Kamp



Example: Q100 for the Kamp at Zwettl

Given the maximum annual peak discharges of the river Kamp at Zwettl
(622 km2) how much is the 100-year peak discharge?
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Distribution functions

In hydrology many probability distributions have been adopted to
describe flood peaks. Here we use the Generalised Extreme Value
distribution (GEV) which is:

fX (x |θ) =
1

θ2

[
1− θ3(x − θ1)

θ2

]1/θ3−1

exp

{
−
[

1− θ3(x − θ1)

θ2

]1/θ3
}

FX (x |θ) = exp

{
−
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1− θ3(x − θ1)

θ2

]1/θ3
}

x(F |θ) = θ1 +
θ2

θ3

[
1− (− lnF )θ3

]
therefore

QT = θ1 +
θ2

θ3
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(
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(
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Parameter estimation

To estimate θ = (θ1, θ2, θ3), many methods exist such as:

I Method of moments: after deriving equations that relate the
population moments (mean, variance, skewness, ...) to its
parameters, use the sample moments of the data in the equations

I Method of L-moments: same thing but with L-moments

I Maximum Likelihood method: after defining as likelihood the joint
density function of the observations, find the parameters that
maximise it

I Bayesian inference: estimate the probability density function of the
parameters from the observations and prior knowledge about them



Bayesian inference

The Bayes’s Theorem

p(θ|D) =
`(D|θ)π(θ)∫

allθ
`(D|θ)π(θ)dθ

∝ `(D|θ)π(θ)

states that the posterior distribution of θ given data D is equal to the
product of the likelihood of observing D given θ and the prior distribution
of θ divided by the integrated likelihood.

The second formulation gives the posterior distribution only up to a
multiplicative constant, but often this is enough, and avoids the difficulty
of evaluating the integrated likelihood, also called the normalizing
constant in this context.



Example: Q100 for the Kamp at Zwettl
By writing

`(D|θ) =
s∏

i=1

fX (xi |θ) π(θ) ∝ 1/θ2

where the sample of annual discharge maxima systematically recorded is
x1, x2, . . . , xs (in our case, s=50 years), one gets, after applying the
MCMC method, the posterior distribution mean and its (e.g., 90%)
credible intervals
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Ok! We can now read Q100 from
the graph: it’s say 175 m3/s ±50
m3/s (well... not so
symmetrically)



2002 Flood Event!

from Viglione et al.(2010)

Hadersdorf Zwettl



2002 Flood Event!

After having observed the huge flood, how much is the 100-year peak
discharge? And what’s the return period of the 2002 event?
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Example: Q100 for the Kamp at Zwettl

If I redo everything with the additional 2002 event, how much is the
100-year peak discharge? And what’s the return period of the 2002
event?
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Flood Frequency Hydrology: temporal expansion

Three major historical floods are documented in the region (Viglione et
al., 2013; Wiesbauer, 2007)
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Flood Frequency Hydrology: temporal expansion

By writing (see Stedinger and Cohn, 1986)

`(D|θ) =
s∏

i=1

fX (xi |θ)

(
h

k

)
FX (X0|θ)(h−k)


k∏

j=1

[FX (yUj |θ)− FX (yLj |θ)]


where in this case k=3, h=350 and X0=300 m3/s, one gets...
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Flood Frequency Hydrology: spatial expansion

from Salinas et al. (2014)



Flood Frequency Hydrology: spatial expansion
By writing

π(θ) ∝ 1

θ2
N
(
θ3|µθ3 , σ

2
θ3

)
where regional data are used for the guessing reasonbable values for the
GEV shape parameter θ3, i.e., µθ3 = −0.3 and σθ3 = 0.1, one gets...
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Flood Frequency Hydrology: temporal + spatial expansion

I combine the two sources of information through the Bayes’ theorem:

p(θ|D) ∝ `(D|θ)π(θ)

where the systematic data and historic information define the likelihood:

`(D|θ) =
s∏

i=1

fX (xi |θ)

(
h

k

)
FX (X0|θ)(h−k)


k∏

j=1

[FX (yUj |θ)− FX (yLj |θ)]


and the regional information on the shape parameter of the GEV
distribution goes into the prior distribution of the parameters:

π(θ) ∝ 1

θ2
N
(
θ3|µθ3 , σ

2
θ3

)



Flood Frequency Hydrology: temporal + spatial expansion

If I combine the two sources of information, how much is the 100-year
peak discharge? Well, say 250±50 m3/s And what’s the return period of
the 2002 event? Large uncertainty remains but...
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Viglione, A., R. Merz, J. S. Salinas, and G. Blöschl (2013), Flood frequency hydrology: 3. A Bayesian analysis.

Water Resources Research 49(2), 675-692, doi:10.1029/2011WR010782.

http://dx.doi.org/10.1029/2011WR010782


Flood Frequency Hydrology

How do we do this in R?

URL: https://diatibox.polito.it/s/4LJdpPtIuHRq7pE
PSW: rinhydrology

code: MCMC FFH codes20190709.R



Bayesian inference

As already discussed, the Bayes’s Theorem can be written as

p(θ|D) ∝ `(D|θ)π(θ)

that gives the posterior distribution only up to a multiplicative constant.
Among the advantages over other parameter estimation methods:

I `(D|θ) can be easily defined even for complex models

I π(θ) provides a way of incorporating external information (outside
the current data set)

Sampling from p(θ|D) can be performed through Markov chain Monte
Carlo (MCMC) methods, which are based on constructing a Markov
chain that has the desired distribution as its equilibrium distribution.



MCMC: Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo
(MCMC) method for obtaining a sequence of random samples from any
probability distribution (a.k.a. the target distribution), provided you can
compute the value of a function that is proportional to its density.

This sequence can be used to approximate the distribution (e.g., to
generate the histogram of the target distribution), or to compute an
integral (such as its expected value).

In our case, the target distribution is p(θ|D), while `(D|θ)π(θ) is the
function proportional to its density.



MCMC: Metropolis-Hastings algorithm

Let f (x) be a function that is proportional to the desired target
distribution p(x).

I Choose an arbitrary point x0 to be the first sample, and choose an
arbitrary probability density g(x ′|x) (a.k.a. the proposal density)
that suggests a candidate for the next sample value x ′, given the
previous sample value x .

I For each iteration t:

1. Generate a candidate x ′ for the next sample by picking from the
distribution g(x ′|xt).

2. Calculate the acceptance ratio

α =
f (x ′)

f (xt)

g(xt |x ′)

g(x ′|xt)

which will be used to decide whether to accept or reject the
candidate.

3. If α ≥ 1 accept the candidate by setting xt+1 = x ′. Otherwise,
accept the candidate with probability α. If the candidate is rejected,
set xt+1 = xt instead.



MCMC: Metropolis-Hastings algorithm

The most common choice is for a symmetric proposal density g , i.e.
g(x |y) = g(y |x), in which case the algorithm is called Metropolis
algorithm, and α = f (x ′)/f (xt) = p(x ′)/p(xt).

Why? in the end you want the condition p(xt ) · Pr [xt → x′ ] = p(x′) · Pr [x′ → xt ], to mantain equilibrium,
so, if p(xt ) > p(x′) you may choose Pr [x′ → xt ] = 1 and Pr [xt → x′ ] = p(x′)/p(xt ) = α and vice-versa

The variance of the proposal density has to be tuned because too small
and too large variances would lead to a slow convergence of the chain.

Since the resulting samples are correlated, we have to throw away the
majority of samples and only take every n-th sample, for some value of n
(typically determined by examining the autocorrelation between adjacent
samples) which defines the thinning period.

Since the initial samples may follow a very different distribution than
p(x), we have to throw them away by setting a burn-in period.



Noninformative Prior Distributions

There have been many efforts to find priors that carry no information, or
noninformative priors. In general, this has turned out to be a modern
version of the Philosopher’s Stone. There are some very simple problems
for which there are agreed reference priors. One example is the normal
mean problem, for which a flat prior

p(θ) ∝ 1

is often used. This is an improper prior, i.e. it does not integrate up to 1,
nevertheless the resulting posterior distribution is proper.

Improper noninformative priors can lead to paradoxes and strange
behavior and should be used with extreme caution. The current trend in
applied Bayesian statistical work is towards informative and, if necessary,
spread out but proper prior distributions.



Noninformative Prior Distributions

The Jeffreys prior is a noninformative prior distribution for a parameter
space, which is invariant under reparameterization.

I For the Gaussian distribution with known variance, the Jeffreys prior
for the mean is p(µ) ∝ 1, which is translation-invariant
corresponding to no information about location.

I For the Gaussian distribution with known mean the Jeffreys prior for
the standard deviation is p(σ) ∝ 1/σ, or equivalently p(log σ) ∝ 1,
which is scale-invariant corresponding to no information about scale.

I For the Gaussian distribution with unknown mean and variance,
Jeffreys’ advice is to assume that µ and σ are independent apriori
and use p(µ, σ) ∝ 1/σ, which is translation-scale invariant.

Northrop and Attalides (2015) demonstrate that for the GEV the Jeffreys
prior does not yield a proper posterior while independent uniform priors
do: i.e., π(θ) ∝ 1/θ2.



MCMC for the GEV distribution in R

URL: https://diatibox.polito.it/s/4LJdpPtIuHRq7pE
PSW: rinhydrology

> MCMC01 <- function (x, N=1000, theta0=c(1,0,-.5), pseudo_var=c(1,1,1),

... burnin=100) {

... # N = final sample size (i.e., excluding the burn-in length)

... # theta0 = starting point of your Metropolis chain containing (mu0, log(sigma0), xi0)

... # pseudo_var = variance for the normal that is used as the proposal distribution for random-walk

... # Metropolis (independent sampling)

... # burnin = number specified will be the number of initial samples chucked

... require(MASS) #requires package MASS for normal sampling

... thetas <- theta0

... for (i in 2:(burnin+N)) {

... loglikelihood0 <- sum(log(dGEV(x, mu=theta0[1],

... sigma=exp(theta0[2]), xi=theta0[3])))

... logprior0 <- 0 # because 1/sigma corresponds to uniform distr of the log(sigma)

... logtarget0 <- loglikelihood0 + logprior0

... if(is.nan(logtarget0)) logtarget0 <- -10000000

... prop <- mvrnorm(n=1, mu=theta0, Sigma=diag(pseudo_var))

... loglikelihood1 <- sum(log(dGEV(x, mu=prop[1],

... sigma=exp(prop[2]), xi=prop[3])))

... logprior1 <- 0

... logtarget1 <- loglikelihood1 + logprior1

... if(is.nan(logtarget1)) logtarget1 <- -10000000

... if (runif(1) < min(1, exp(logtarget1 - logtarget0))) {

... theta0 <- prop

... }

... thetas <- rbind(thetas, theta0)

... }

... thetas[(burnin+1):(N+burnin),]

... }
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MCMC for GEV in R: temporal + spatial expansion
> MCMC04 <- function (x, prior_t3=c(0,10),

... infhist, suphist, thres, nbelow,

... N=1000, theta0=c(1,0,-.5), pseudo_var=c(1,1,1), burnin=100) {

... # prior_t3 = parameters of normal distribution for theta3 (shape of GEV)

... # infhist = lower limits for historic discharges

... # suphist = upper limits for historic discharges

... # thres = perception threshold for historic period

... # nbelow = period (in years) over which the threshold has not been exceeded

... # except for the historical data

... require(MASS) #requires package MASS for normal sampling

... thetas <- theta0

... for (i in 2:(burnin+N)) {

... loglikelihood0 <- sum(log(dGEV(x, mu=theta0[1], sigma=exp(theta0[2]), xi=theta0[3])))

... loglikelihood0hist <- sum((nbelow - 1) * log(pGEV(thres, mu=theta0[1],

... sigma=exp(theta0[2]), xi=theta0[3]))) +

... sum(log(pGEV(suphist, mu=theta0[1], sigma=exp(theta0[2]), xi=theta0[3]) -

... pGEV(infhist, mu=theta0[1], sigma=exp(theta0[2]), xi=theta0[3])))

... logprior0 <- log(dnorm(theta0[3], mean=prior_t3[1], sd=prior_t3[2]))

... logtarget0 <- loglikelihood0 + loglikelihood0hist + logprior0

... if(is.nan(logtarget0)) logtarget0 <- -10000000

... prop <- mvrnorm(n=1, mu=theta0, Sigma=diag(pseudo_var))

... loglikelihood1 <- sum(log(dGEV(x, mu=prop[1], sigma=exp(prop[2]), xi=prop[3])))

... loglikelihood1hist <- sum((nbelow - 1) *

... log(pGEV(thres, mu=prop[1],

... sigma=exp(prop[2]), xi=prop[3]))) +

... sum(log(pGEV(suphist, mu=prop[1],

... sigma=exp(prop[2]), xi=prop[3]) -

... pGEV(infhist, mu=prop[1],

... sigma=exp(prop[2]), xi=prop[3])))

... logprior1 <- log(dnorm(prop[3], mean=prior_t3[1], sd=prior_t3[2]))

... logtarget1 <- loglikelihood1 + loglikelihood1hist + logprior1

... if(is.nan(logtarget1)) logtarget1 <- -10000000

... if (runif(1) < min(1, exp(logtarget1 - logtarget0))) {

... theta0 <- prop

... }

... thetas <- rbind(thetas, theta0)

... }

... thetas[(burnin+1):(N+burnin),]

... }
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MCMC in R

There are many (MANY!) R packages for Bayesian inference through MCMC
algorithms. Search for “CRAN Task View: Bayesian Inference” on the web (131
packages are listed there!). Among the ones that I have tried, or heard of, are:

mcmc Markov Chain Monte Carlo with the random-walk Metropolis algorithm

MCMCpack Markov Chain Monte Carlo (MCMC) Package with algorithms for a wide
range of models

MCMCglmm MCMC Generalised Linear Mixed Models

R2WinBUGS Running ‘WinBUGS’ (http://www.mrc-bsu.cam.ac.uk/software/bugs/)
and ‘OpenBUGS’ (http://www.openbugs.net/w/FrontPage) from R or S-PLUS

R2jags Using R to Run ‘JAGS’ (http://mcmc-jags.sourceforge.net/)

rstan R Interface to ‘Stan’ (https://mc-stan.org/)

dream DiffeRential Evolution Adaptive Metropolis: efficient global MCMC even in
high-dimensional spaces

extRemes Extreme Value Analysis, which includes Bayesian inference with MCMC

nsRFA Non-Supervised Regional Frequency Analysis, which includes Bayesian
inference with MCMC

http://www.mrc-bsu.cam.ac.uk/software/bugs/
http://www.openbugs.net/w/FrontPage
http://mcmc-jags.sourceforge.net/
https://mc-stan.org/

