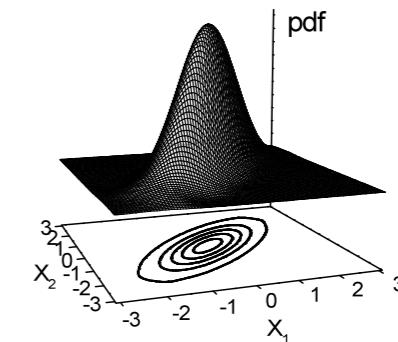


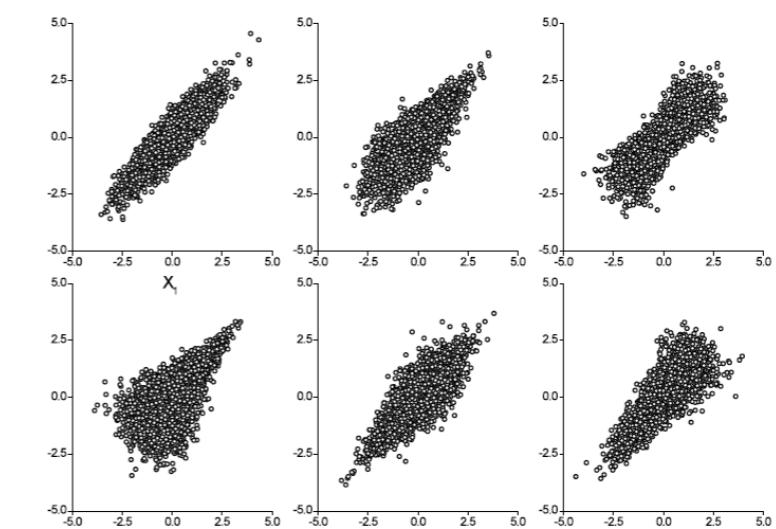
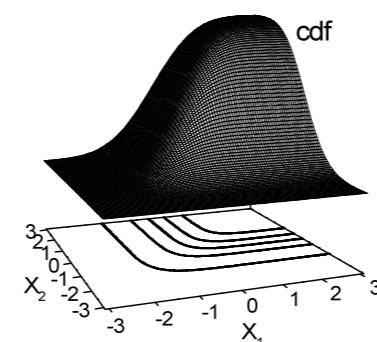
STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

HOW TO COMMUNICATE STATISTICS TO THE HYDROLOGICAL COMMUNITY/PRACTICE PARTNERS


EARLY CAREER COURSE

SALVATORE GRIMALDI



Università della Tuscia, Viterbo, Italy

SUMMARY

- My relationship with statistical hydrology
- Topics, papers, and divulgation
- Vision for the future and suggestions

EARLY CAREER COURSE

My relationship with statistical hydrology

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My relationship with statistical hydrology

1997 - MS thesis on Transfer Function Noise Models (Box & Jenkins)

1998-2000 - PhD thesis on liner parametric models (ARMA, FARMA, Hurst effect)

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My relationship with statistical hydrology

1997 - MS thesis on Transfer Function Noise Models (Box & Jenkins)

1998-2000 - PhD thesis on liner parametric models (ARMA, FARMA, Hurst effect)

- collaboration with prof. Domenico Piccolo, a distinguished professor in statistics
- participant to the Interuniversity Mathematical School in Perugia 5 weeks
- collaboration with Alberto Montanari
- S-plus (later R language) programming

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My relationship with statistical hydrology

1997 - MS thesis on **Transfer Function Noise Models** (Box & Jenkins)

1998-2000 - PhD thesis on **linear parametric models (ARMA, FARMA, Hurst effect)**

- collaboration with prof. Domenico Piccolo, a distinguished professor in statistics
- participant to the Interuniversity Mathematical School in Perugia 5 weeks
- collaboration with Alberto Montanari
- S-plus (later R language) programming

2000-2002 PostDoc on totally different topic (GIS for Hydrology)

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My relationship with statistical hydrology

1997 - MS thesis on **Transfer Function Noise Models** (Box & Jenkins)

1998-2000 - PhD thesis on **linear parametric models (ARMA, FARMA, Hurst effect)**

- collaboration with prof. Domenico Piccolo, a distinguished professor in statistics
- participant to the Interuniversity Mathematical School in Perugia 5 weeks
- collaboration with Alberto Montanari
- S-plus (later R language) programming

2000-2002 PostDoc on totally different topic (GIS for Hydrology)

2002 - attracted by **copula function** listening a presentation during a conference

2002-2008 a long period of **research activity on copula function**

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My relationship with statistical hydrology

1997 - MS thesis on **Transfer Function Noise Models** (Box & Jenkins)

1998-2000 - PhD thesis on **linear parametric models (ARMA, FARMA, Hurst effect)**

- collaboration with prof. Domenico Piccolo, a distinguished professor in statistics
- participant to the Interuniversity Mathematical School in Perugia 5 weeks
- collaboration with Alberto Montanari
- S-plus (later R language) programming

2000-2002 PostDoc on totally different topic (GIS for Hydrology)

2002 - attracted by **copula function** listening a presentation during a conference

2002-2008 a long period of **research activity on copula function**

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

2004 - my first paper on Linear Parametric Models

My relationship with statistical hydrology

1997 - MS thesis on **Transfer Function Noise Models** (Box & Jenkins)

1998-2000 - PhD thesis on **linear parametric models (ARMA, FARMA, Hurst effect)**

- collaboration with prof. Domenico Piccolo, a distinguished professor in statistics
- participant to the Interuniversity Mathematical School in Perugia 5 weeks
- collaboration with Alberto Montanari
- S-plus (later R language) programming

2000-2002 PostDoc on totally different topic (GIS for Hydrology)

2002 - attracted by **copula function** listening a presentation during a conference

2002-2008 a long period of **research activity on copula function**

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

2004 - my first paper on Linear Parametric Models

2004 - my first paper on GIS for Hydrology

My relationship with statistical hydrology

1997 - MS thesis on **Transfer Function Noise Models** (Box & Jenkins)

1998-2000 - PhD thesis on **linear parametric models (ARMA, FARMA, Hurst effect)**

- collaboration with prof. Domenico Piccolo, a distinguished professor in statistics
- participant to the Interuniversity Mathematical School in Perugia 5 weeks
- collaboration with Alberto Montanari
- S-plus (later R language) programming

2000-2002 PostDoc on totally different topic (GIS for Hydrology)

2002 - attracted by **copula function** listening a presentation during a conference

2002-2008 a long period of **research activity on copula function**

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

2004 - my first paper on Linear Parametric Models

2004 - my first paper on GIS for Hydrology

2006 - my first paper on Copula for hydrological applications

My relationship with statistical hydrology

1997 - MS thesis on **Transfer Function Noise Models** (Box & Jenkins)

1998-2000 - PhD thesis on **linear parametric models (ARMA, FARMA, Hurst effect)**

- collaboration with prof. Domenico Piccolo, a distinguished professor in statistics
- participant to the Interuniversity Mathematical School in Perugia 5 weeks
- collaboration with Alberto Montanari
- S-plus (later R language) programming

2000-2002 PostDoc on totally different topic (GIS for Hydrology)

2002 - attracted by **copula function** listening a presentation during a conference

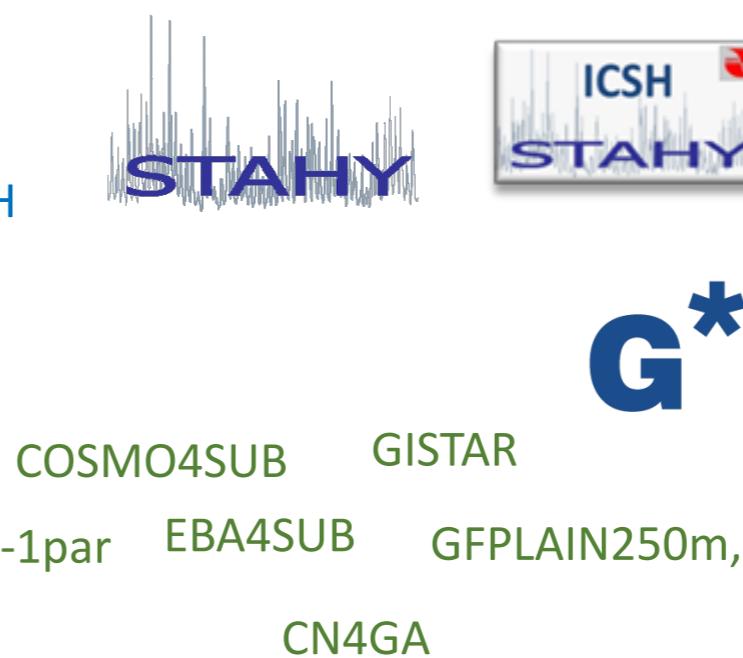
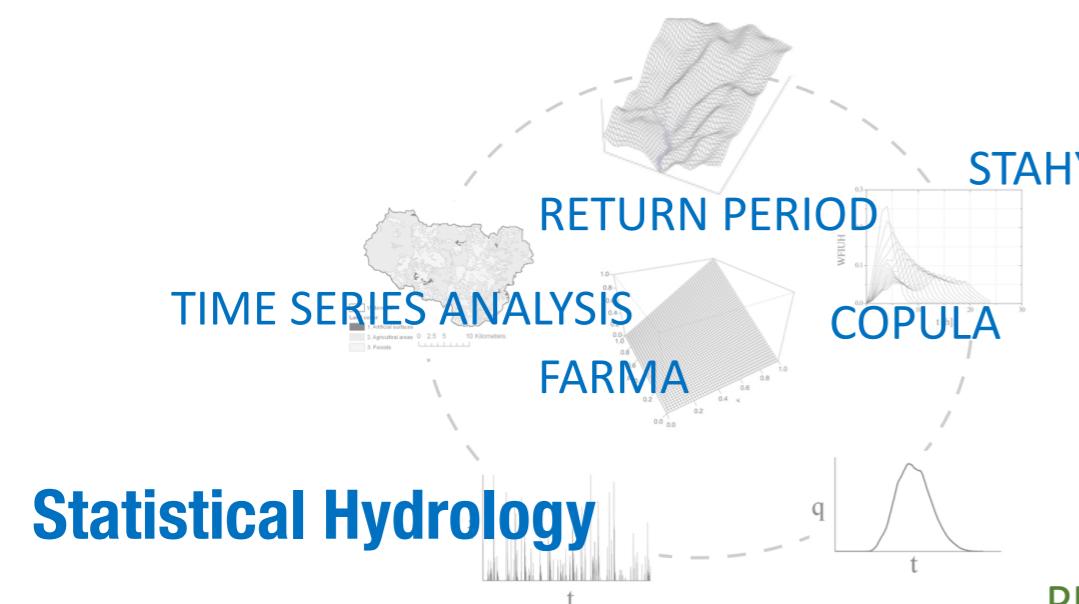
2002-2008 a long period of **research activity on copula function**

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

2004 - my first paper on Linear Parametric Models



2004 - my first paper on GIS for Hydrology

2006 - my first paper on Copula for hydrological applications

2008 - attracted by experimental hydrology and sensoring

2010 - my first paper on experimental hydrology

My research interests

GIS Terrain Analysis Research

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

GIS Terrain Analysis - Hydrology in Ungauged Basins

Experimental Hydrology

CandHy
Citizen and Hydrology
IAHS-WG

CAPE FEAR

GIANT RAINGAUGE

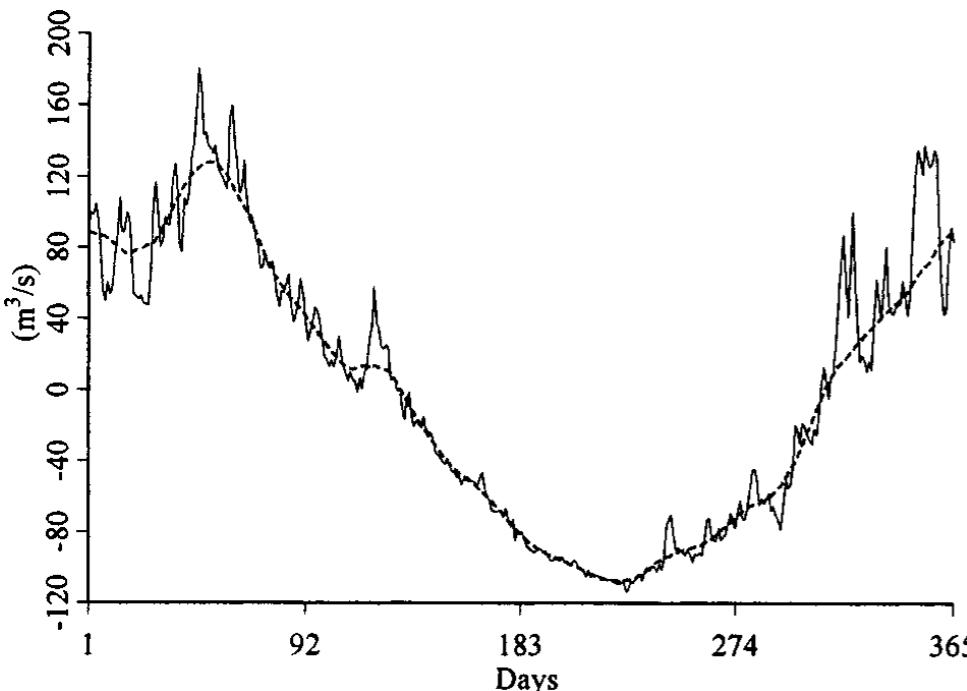
FLUORESCENT PARTICLES

GAUGE CAM

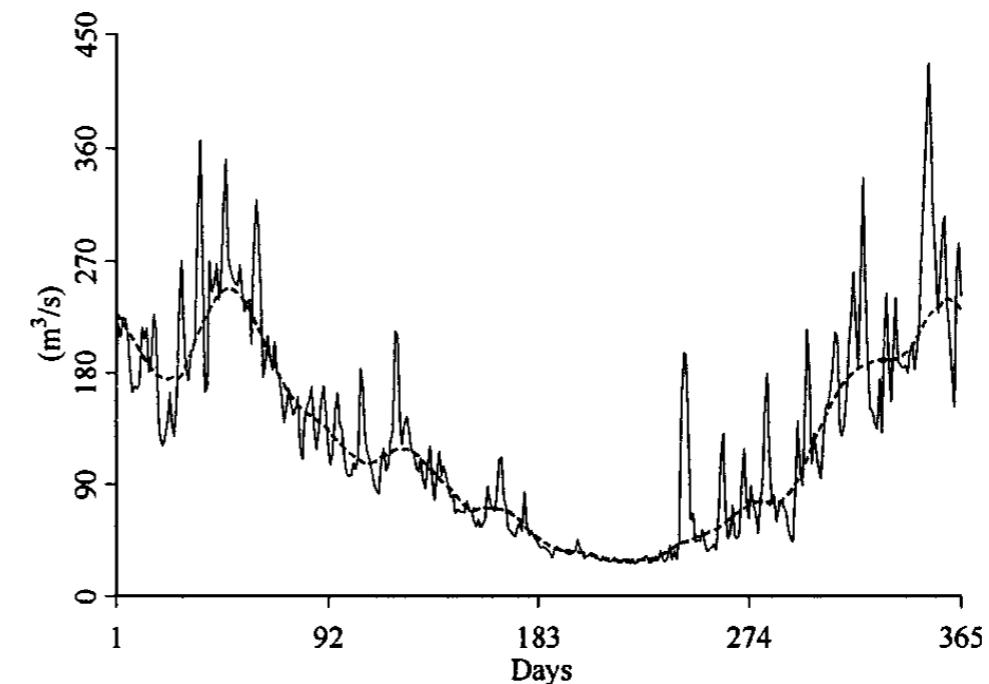
DRONES

LSPIV
PTV
MOXXI

MOXXI
Measurements &
Observations in the
21st Century
Working Group - International Association of Hydrological Sciences


EARLY CAREER COURSE

Topic 1 - Time series analysis


FARMA - Seasonal Component, Hurst parameter

$$\phi(B)\nabla^d X_t = \theta(B)a_t \quad d = H - 0.5;$$

$$d(X_t, Y_t) = \sqrt{\sum_{j=1}^{\infty} (\pi_{jx} - \pi_{jy})^2}$$

Fig. 1. Mean periodic components estimated by classical method and by seasonal trend decomposition based on loess modified method (dashed line) with smoothing window=30

Fig. 2. Variance periodic components estimated by classical method and by seasonal trend decomposition based on loess modified method (dashed line) with smoothing window=30

Linear Parametric Models Applied to Daily Hydrological Series

Salvatore Grimaldi¹

Abstract: The aim of this paper is to describe, and solve in some cases, the problems that arise in hydrological daily time series modeling developed via linear parametric models. The preliminary analysis, the identification, and the simulation steps of the standard procedure are thoroughly studied. The effects of Box and Cox transformation are commented on, a procedure to smooth the seasonal component is described, and a new technique for the initial parameter estimation of fractional models is introduced and tested. The revised procedure was applied to the time series of Tevere daily flows.

DOI: 10.1061/(ASCE)1084-0699(2004)9:5(383)

CE Database subject headings: Time series analysis; Simulation models; Auto-regressive moving-average model; Seasonal variation; Hydrological models.

Introduction

To analyze hydrological processes, the use of statistical tools is needed. In fact, the complexity of hydrological phenomena does not allow us to develop deterministic forecast or management systems. Therefore, an approach that overlooks the physics of the problem and only uses the observed data information is helpful.

In this perspective, the time series parametric modeling has had, and still has, an important role in hydrological analysis. The possibility to identify the dynamic component of a signal fostered the development of simulation and forecast procedures.

In the water resources management, there are different applications based on the use of scenarios similar to the real one obtained by generating synthetic series.

In the last years, interesting results were obtained by the use of the simple linear parametric models (LPMs) applied with annual or monthly aggregation scales. Here by LPM we mean all the family of linear models that, starting from the Box and Jenkins (1976) definition, is increased with the creation of many model subtypes. In fact, from the simple autoregressive moving-average model (ARIMA) model we obtained (periodic autoregressive moving-average), Seasonal ARMA, fractional ARMA (FARMA), seasonal fractional ARIMA, contemporaneous ARMA, space-time ARMA, etc. [for a description of these models see Hipel and McLeod (1994) and Montanari et al. 2000], that in any case are linear models and they roughly follow a common procedure to be built.

Perhaps, by extending the modeling to series with daily aggregation scale, potential applications concerning the water resources management will be more widespread and useful. The daily series not only gives the desired information with more details, but statistically it also makes more numerous samples available, providing a more consistent parameter estimation of the identified model. However this type of series shows that the problem has larger variability that makes it difficult to conform to the stochastic processes basic hypotheses.

Consequently, the traditional procedure, developed above all for hydrological applications with annual and monthly series, has to be modified in order to be related to model daily series.

The aim of this paper is to study the methodological problems present in the analysis of hydrological daily series and to suggest some improvements. In the following paragraphs, every standard procedure step is synthetically described highlighting the problems to solve.

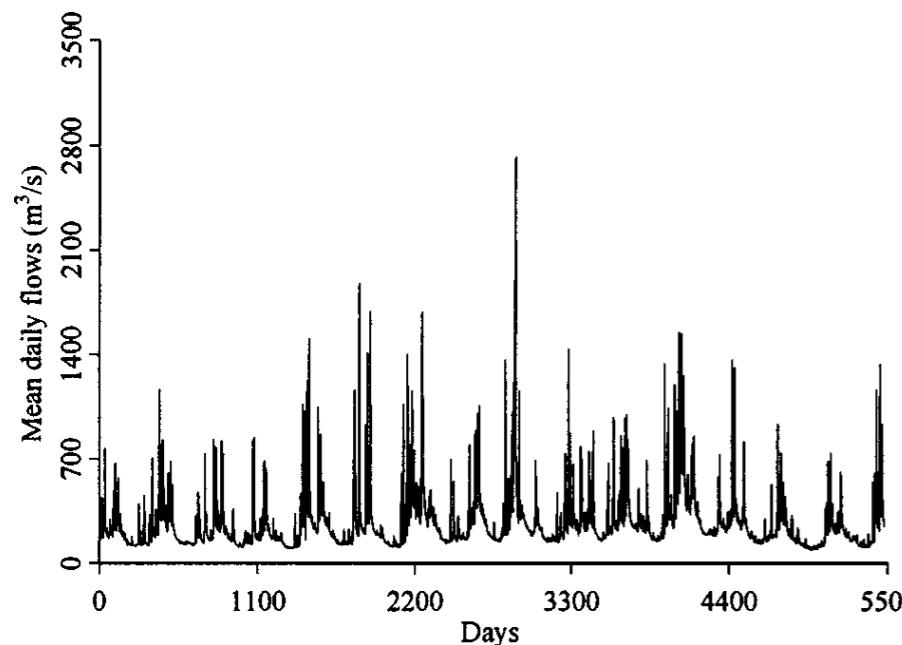
From the main references about this topic (Box and Jenkins 1976; Brockwell and Davis 1987; Piccolo 1990; Salas 1993; Bras and Rodriguez-Iturbe 1994; Hipel and McLeod 1994) it is possible to resume the LPM modeling standard procedure in the following steps called: "Preliminary Analysis, Identification, Estimation, Verification, Optimal Model Chosen."

The "Preliminary Analysis" is the step by which the analyst usually checks that the basic conditions are followed. In fact, in order to apply a LPM, the series has to be schematized as stochastic processes. The main hypotheses of these processes are the Gaussian distribution and the stationarity condition. Usually, the observed series are not exactly Gaussian or stationary; therefore to overcome the eventual distortions in the procedure some transformations are suggested. As for the distribution, the Box and Cox (1964) formulas were largely described and recommended. Regarding the stationarity, the attention is focused mainly on the seasonal behavior of the subannual series. In the literature, some different approaches to rise above this problem were introduced (Kottegoda 1980; Hipel and McLeod 1994).

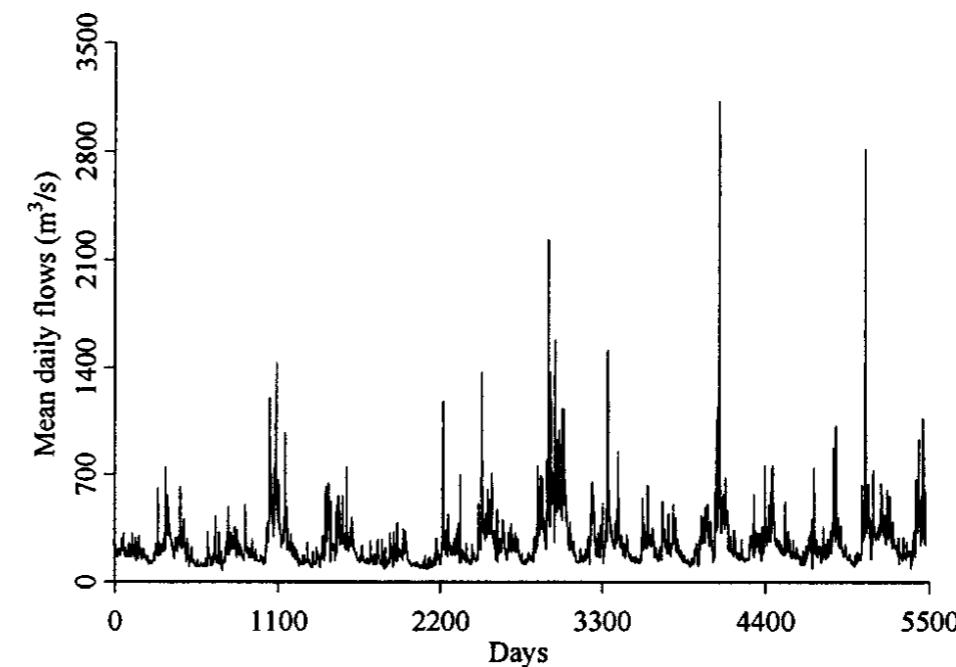
During the "Identification" step, the preliminary parameter estimation of the hypothesized model configurations is made. For a very simple configuration, this step could be neglected because the improved estimation techniques no longer need the initial values. For more complex configuration and for particular models, like the fractional models, this step remains important. Moreover, during the identification step, some procedures to verify whether

¹Researcher, IRPI-National Research Council—Via Madonna Alta, 126-06128 Perugia, Italy. E-mail: salvatore.grimaldi@ipi.cnr.it

Note. Discussion open until February 1, 2005. Separate discussions must be submitted for individual papers. To extend the closing date by one month, a written request must be filed with the ASCE Managing Editor. The manuscript for this paper was submitted for review and possible publication on February 7, 2003; approved on January 11, 2004. This paper is part of the *Journal of Hydrologic Engineering*, Vol. 9, No. 5, September, 2004. ©ASCE, ISSN 1084-0699/2004/5-383-391/\$18.00.


STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing


EARLY CAREER COURSE

Topic 1 - Time series analysis

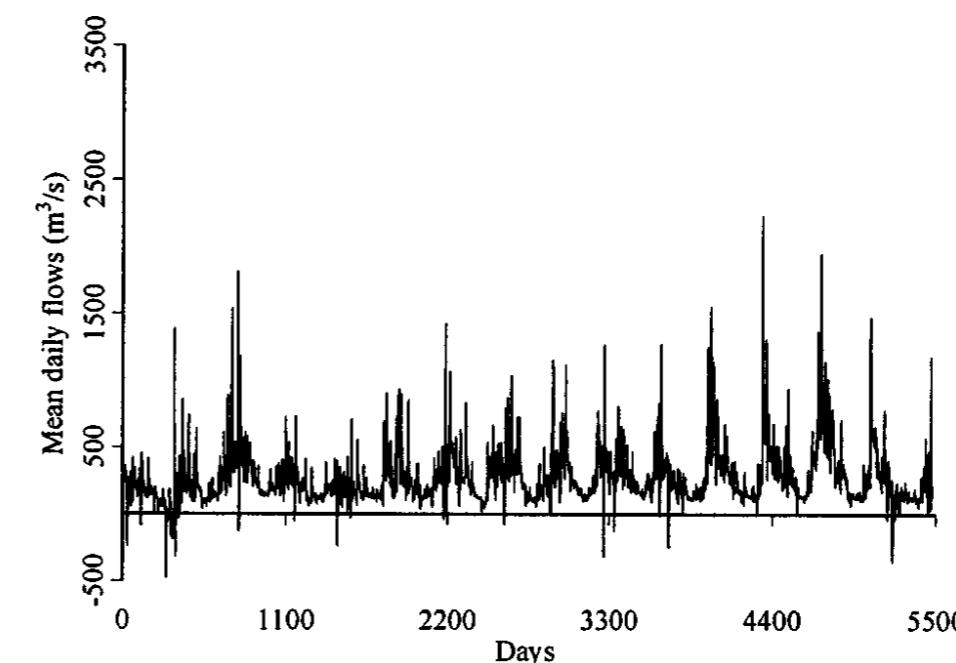

FARMA - Seasonal Component, Hurst parameter

Fig. 4. Tevere mean daily discharge series observed from 1930 to 1944

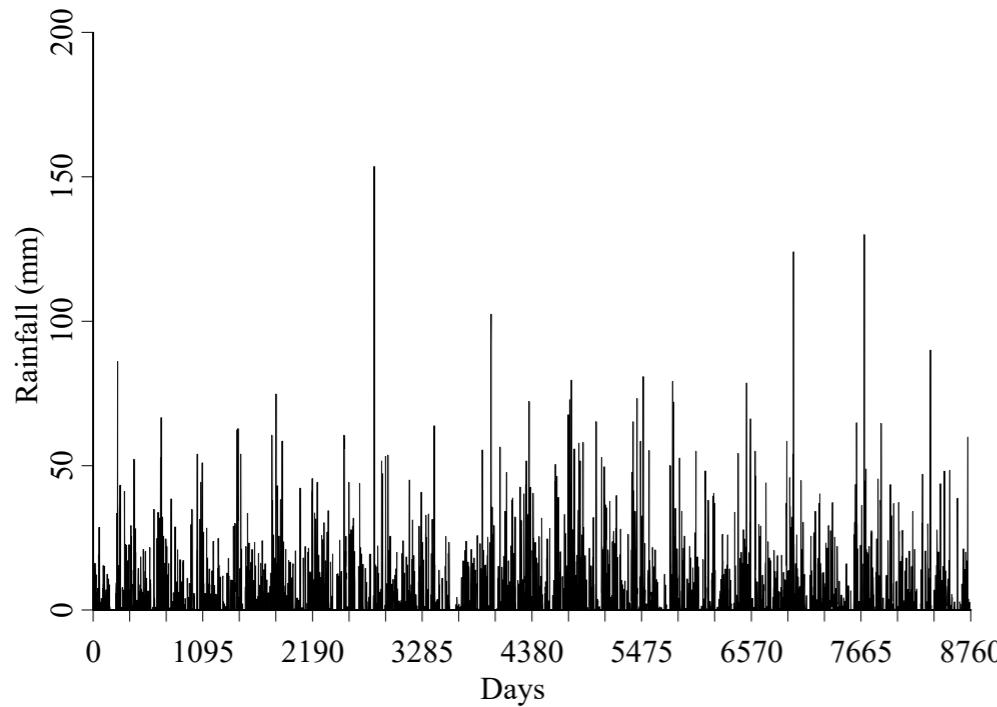

Fig. 10. Example of simulated series of Tevere observed from 1930 to 1944

Fig. 11. Example of simulated series of Tevere observed from 1930 to 1944 obtained modeling series without any preliminary Box and Cox transformation

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

$$\mathbf{y}_t = \mathbf{v} + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} + \dots + \mathbf{A}_p \mathbf{y}_{t-p} + \mathbf{u}_t \\ + \mathbf{M}_1 \mathbf{u}_{t-1} + \mathbf{M}_2 \mathbf{u}_{t-2} + \dots + \mathbf{M}_q \mathbf{u}_{t-q} \quad (1)$$

where $\mathbf{y}_t = \{y_{1t}, y_{2t}, \dots, y_{kt}\}$ is k -dimension vector of variables at the time t , $\mathbf{v} = \{v_1, v_2, \dots, v_k\}$ is a constant vector, $\mathbf{u}_t = \{u_{1t}, u_{2t}, \dots, u_{kt}\}$ white-noise vector, and where

$$\mathbf{A}_i = \begin{vmatrix} a_{i11} a_{i12} \dots a_{i1k} \\ a_{i21} a_{i22} \dots a_{i2k} \\ \dots \\ a_{ik1} a_{ik2} \dots a_{ikk} \end{vmatrix} \quad i = 1, 2, \dots, p,$$

$$\mathbf{M}_i = \begin{vmatrix} m_{i11} m_{i12} \dots m_{i1k} \\ m_{i21} m_{i22} \dots m_{i2k} \\ \dots \\ m_{ik1} m_{ik2} \dots m_{ikk} \end{vmatrix} \quad i = 1, 2, \dots, q,$$

Advances in Geosciences, 2, 87–92, 2005
SRef-ID: 1680-7359/adgeo/2005-2-87
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Multivariate linear parametric models applied to daily rainfall time series

S. Grimaldi¹, F. Serinaldi², and C. Tallerini²

¹Institute of Research for Hydrogeological Protection, CNR-IRPI, Perugia Italy

²Department of Hydraulics, Transportations and Highways, University of Rome "La Sapienza", Rome, Italy

Received: 18 November 2004 – Revised: 15 February 2005 – Accepted: 4 March 2005 – Published: 31 March 2005

Abstract. The aim of this paper is to test the Multivariate Linear Parametric Models applied to daily rainfall series. These simple models allow to generate synthetic series preserving both the time correlation (autocorrelation) and the space correlation (crosscorrelation). To have synthetic daily series, in such a way realistic and usable, it is necessary the application of a corrective procedure, removing negative values and enforcing the no-rain probability. The following study compares some linear models each other and points out the roles of autoregressive (AR) and moving average (MA) components as well as parameter orders and mixed parameters.

Here follows comparisons among MLPMS. The purpose is to point out differences among simple and widely used first-order Vector Autoregressive models, optimal-order Vector Autoregressive models and general Vector Autoregressive Moving Average models described in Sect. 2. The present case study, Sect. 3, also examines the possibility to reduce the number of the parameters in the modelling.

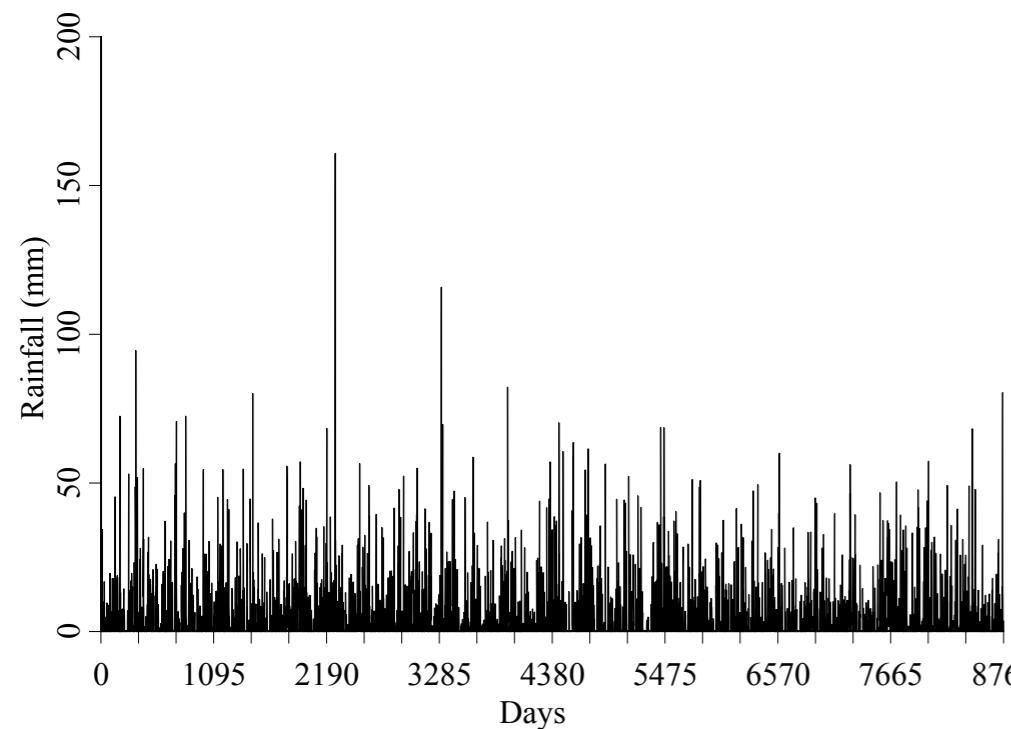
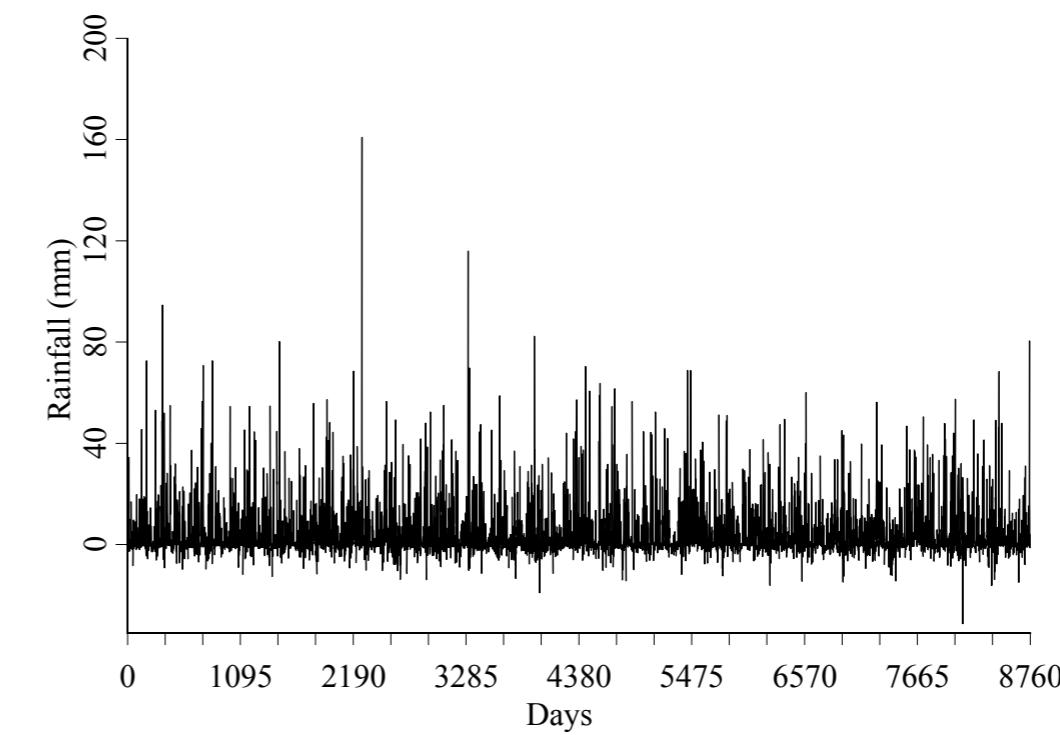
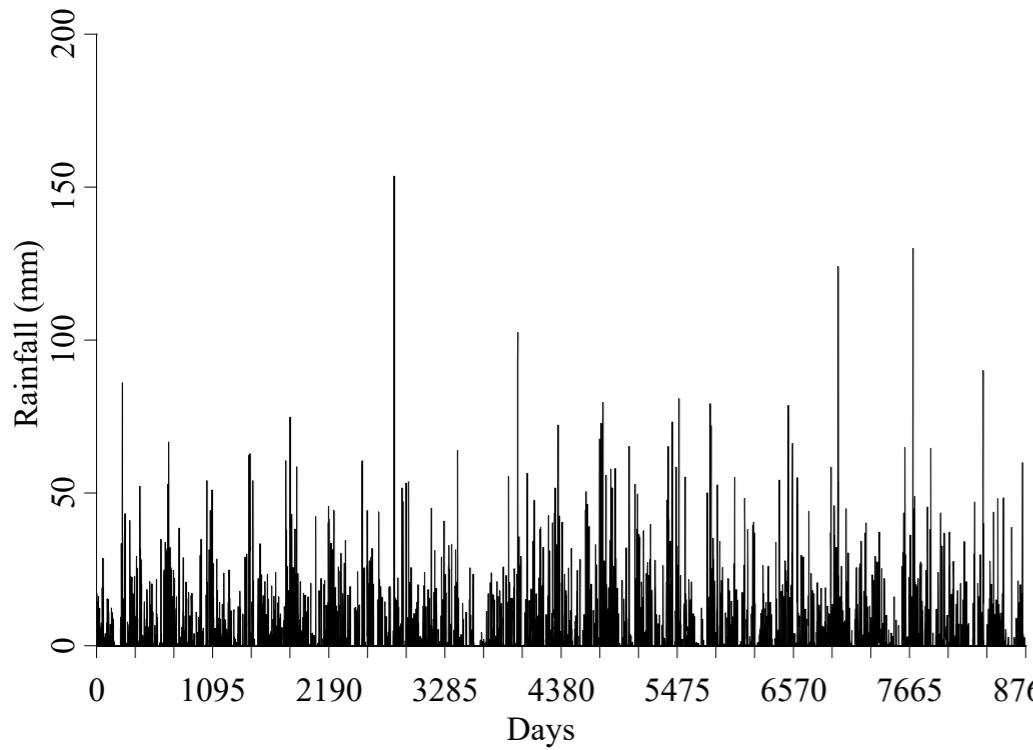
2 Multivariate linear parametric models

A multivariate stochastic process can be described by variables characterized by the autocorrelation, in time domain, and the crosscorrelation in the space-time domain. As in the univariate case, these correlations can be expressed by means of parameter linear combinations. The general class of multivariate linear parametric model is called VARMA(p,q) (Vector Autoregressive Moving Average, Hall and Nicholls, 1979; Lutkepohl, 1993; Hipel and McLeod, 1994):

$$\mathbf{y}_t = \mathbf{v} + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} + \dots + \mathbf{A}_p \mathbf{y}_{t-p} + \mathbf{u}_t \\ + \mathbf{M}_1 \mathbf{u}_{t-1} + \mathbf{M}_2 \mathbf{u}_{t-2} + \dots + \mathbf{M}_q \mathbf{u}_{t-q} \quad (1)$$

where $\mathbf{y}_t = \{y_{1t}, y_{2t}, \dots, y_{kt}\}$ is k -dimension vector of variables at the time t , $\mathbf{v} = \{v_1, v_2, \dots, v_k\}$ is a constant vector, $\mathbf{u}_t = \{u_{1t}, u_{2t}, \dots, u_{kt}\}$ white-noise vector, and where

$$\mathbf{A}_i = \begin{vmatrix} a_{i11} a_{i12} \dots a_{i1k} \\ a_{i21} a_{i22} \dots a_{i2k} \\ \dots \\ a_{ik1} a_{ik2} \dots a_{ikk} \end{vmatrix} \quad i = 1, 2, \dots, p,$$




$$\mathbf{M}_i = \begin{vmatrix} m_{i11} m_{i12} \dots m_{i1k} \\ m_{i21} m_{i22} \dots m_{i2k} \\ \dots \\ m_{ik1} m_{ik2} \dots m_{ikk} \end{vmatrix} \quad i = 1, 2, \dots, q,$$

are respectively the Autoregressive and the Moving average coefficient matrices. Since this general expression is usually characterized by a high number of parameters and a complex

Correspondence to: S. Grimaldi
(salvatore.grimaldi@irpi.cnr.it)

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

$$X_{s1} = X_s - \xi_1 \quad P_{NV}[X_{s1}] = P_{NR}[X_t]$$
$$X_{s2} = \begin{cases} X_{s1} & \text{if } X_{s1} > 0 \\ 0 & \text{if } X_{s1} \leq 0 \end{cases}$$
$$X_{s3} = \begin{cases} X_{s2} + \xi_2 & \text{if } X_{s2} > 0 \\ 0 & \text{if } X_{s2} = 0 \end{cases} \quad V[X_{s3}] = V[X_t]$$

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

This my first experience was totally a failure in terms of communication and develop a good research topic !!!!!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

This my first experience was totally a failure in terms of communication and develop a good research topic !!!!!

Pro:

I learned a lot, several statistical methods and useful hydrological tools.
I made a decent paper (36 citations).

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

This my first experience was totally a failure in terms of communication and develop a good research topic !!!!!

Pro:

I learned a lot, several statistical methods and useful hydrological tools.
I made a decent paper (36 citations).

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

Cons:

I have spent three years on this topic without reaching any impacts in the scientific community and in the technological transfer.

EARLY CAREER COURSE

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

This my first experience was totally a failure in terms of communication and develop a good research topic !!!!!

Pro:

I learned a lot, several statistical methods and useful hydrological tools.
I made a decent paper (36 citations).

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

Cons:

I have spent three years on this topic without reaching any impacts in the scientific community and in the technological transfer.

EARLY CAREER COURSE

Reasons of the failure:

- I was young and I was in a group without deep scientific attitude;
- I did not believed on myself and on my ideas;
- I did not realised that the topic was good and that a paper is a starting point and not a final aim;
- I did not have idea on what does it mean “communicate”, “share” , and “research goal”.

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

...indeed....here there are some papers published in 2017-2018-2019

Chandrasekaran, S., Poomalai, S., Saminathan, B., Suthanthiravel, S., Sundaram, K., Abdul Hakkim, F.F. An investigation on the relationship between the Hurst exponent and the predictability of a rainfall time series(2019) Meteorological Applications, 26 (3), pp. 511-519.

Dawley, S., Zhang, Y., Liu, X., Jiang, P., Tick, G.R., Sun, H., Zheng, C., Chen, L. Statistical analysis of extreme events in precipitation, stream discharge, and groundwater head fluctuation: Distribution, memory, and correlation (2019) Water (Switzerland), 11 (4), art. no. 707, . Cited 1 time.

Karmakar, S., Goswami, S., Chattopadhyay, S. Exploring the pre- and summer-monsoon surface air temperature over eastern India using Shannon entropy and temporal Hurst exponents through rescaled range analysis (2019) Atmospheric Research, 217, pp. 57-62.

Nikolopoulos, D., Moustris, K., Petraki, E., Koulougliotis, D., Cantzos, D. Fractal and long-memory traces in PM <10 time series in Athens, Greece 2019) Environments - MDPI, 6 (3), art. no. 29, .

Tsoukalas, I., Makropoulos, C., Koutsoyiannis, D. Simulation of Stochastic Processes Exhibiting Any-Range Dependence and Arbitrary Marginal Distributions (2018) Water Resources Research, 54 (11), pp. 9484-9513. Cited 4 times.

Markonis, Y., Moustakis, Y., Nasika, C., Sychova, P., Dimitriadis, P., Hanel, M., Máca, P., Papalexiou, S.M. Global estimation of long-term persistence in annual river runoff (2018) Advances in Water Resources, 113, pp. 1-12. Cited 5 times.

Tong, S., Lai, Q., Zhang, J., Bao, Y., Lusi, A., Ma, Q., Li, X., Zhang, F. Spatiotemporal drought variability on the Mongolian Plateau from 1980–2014 based on the SPEI-PM, intensity analysis and Hurst exponent (2018) Science of the Total Environment, 615, pp. 1557-1565. Cited 15 times.

Razavi, S., Vogel, R. Prewhitening of hydroclimatic time series? Implications for inferred change and variability across time scales (2018) Journal of Hydrology, 557, pp. 109-115. Cited 4 times.

Iliopoulou, T., Papalexiou, S.M., Markonis, Y., Koutsoyiannis, D. Revisiting long-range dependence in annual precipitation (2018) Journal of Hydrology, 556, pp. 891-900. Cited 17 times.

Tyrallis, H., Dimitriadis, P., Koutsoyiannis, D., O'Connell, P.E., Tzouka, K., Iliopoulou, T. On the long-range dependence properties of annual precipitation using a global network of instrumental measurements (2018) Advances in Water Resources, 111, pp. 301-318. Cited 10 times.

Zamani, R., Mirabbasi, R., Abdollahi, S., Jhajharia, D. Streamflow trend analysis by considering autocorrelation structure, long-term persistence, and Hurst coefficient in a semi-arid region of Iran (2017) Theoretical and Applied Climatology, 129 (1-2), pp. 33-45. Cited 21 times.

Topic 1 - Time series analysis

FARMA - Seasonal Component, Hurst parameter

...and in the same period.....

Koutsoyiannis, D. Climate change, the Hurst phenomenon, and hydrological statistics
(2003) Hydrological Sciences Journal, 48 (1), pp. 3-24. Cited 213 times.

Hydrological Sciences—Journal—des Sciences Hydrologiques, 48(1) February 2003

3

Climate change, the Hurst phenomenon, and hydrological statistics

DEMETRIS KOUTSOYIANNIS

Department of Water Resources, School of Civil Engineering, National Technical University, Athens Heron Polytechniou 5, GR-157 80 Zographou, Greece
dk@itia.ntua.gr

Abstract The intensive research of recent years on climate change has led to the strong conclusion that climate has always, throughout the Earth's history, changed irregularly on all time scales. Climate changes are closely related to the Hurst phenomenon, which has been detected in many long hydroclimatic time series and is stochastically equivalent to a simple scaling behaviour of climate variability over time scale. The climate variability, anthropogenic or natural, increases the uncertainty of the hydrological processes. It is shown that hydrological statistics, the branch of hydrology that deals with uncertainty, in its current state is not consistent with the varying character of climate. Typical statistics used in hydrology such as means, variances, cross- and auto-correlations and Hurst coefficients, and the variability thereof, are revisited under the hypothesis of a varying climate following a simple scaling law, and new estimators are studied which, in many cases, differ dramatically from the classical ones. The new statistical framework is applied to real-world examples for typical tasks such as estimation and hypothesis testing where, again, the results depart significantly from those of the classical statistics.

Key words climate change; Hurst phenomenon; hydrological persistence; hydrological statistics; hydrological estimation; hydrological prediction; statistical testing; uncertainty

Changement climatique, phénomène de Hurst et statistiques hydrologiques

Résumé La recherche intensive des années récentes sur le changement climatique a conduit à la conclusion sûre que le climat a toujours changé dans l'histoire de la planète, et ceci de manière irrégulière à toutes les échelles de temps. Les changements climatiques sont étroitement liés au phénomène de Hurst, qui a été détecté dans de nombreuses séries temporelles longues d'hydroclimatologie et qui est stochastiquement équivalent à un comportement d'échelle simple de la variabilité climatique sur l'échelle de temps. La variabilité climatique, qu'elle soit d'origine anthropique ou naturelle, augmente l'incertitude liée aux processus hydrologiques. Il est démontré que l'hydrologie statistique, la branche de l'hydrologie qui s'occupe de l'incertitude, n'est pas, dans son état actuel, consistante avec le caractère variable du climat. Quelques caractéristiques statistiques typiquement utilisées en hydrologie comme les moyennes, les variances, les auto-corrélations et corrélations croisées, et le coefficient de Hurst, ainsi que leur variabilité, sont ré-examinées sous l'hypothèse d'un climat variable suivant une loi d'échelle simple. De plus de nouveaux estimateurs, pour la plupart très différents des estimateurs classiques, sont étudiés. Le nouveau cadre statistique est appliqué à des exemples réels, pour des travaux typiques comme l'estimation et le test d'hypothèses, où, à nouveau, les résultats diffèrent significativement de ceux des statistiques classiques.

Mots clefs changement climatique; phénomène de Hurst; persistance hydrologique; statistiques hydrologiques; estimation hydrologique; prédition hydrologique; tests statistiques; incertitude

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

UNIVERSITÀ
DEGLI STUDI DELLA
Tuscia

Topic 2 - Copula function

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

General Definition

A special multivariate distribution that allows to create any multivariate distribution

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

General Definition

A special multivariate distribution that allows to create any multivariate distribution

STAHY 2019
WORKSHOP

Technical definition of copula function

October, 19-20, 2019
Nanjing

Copula

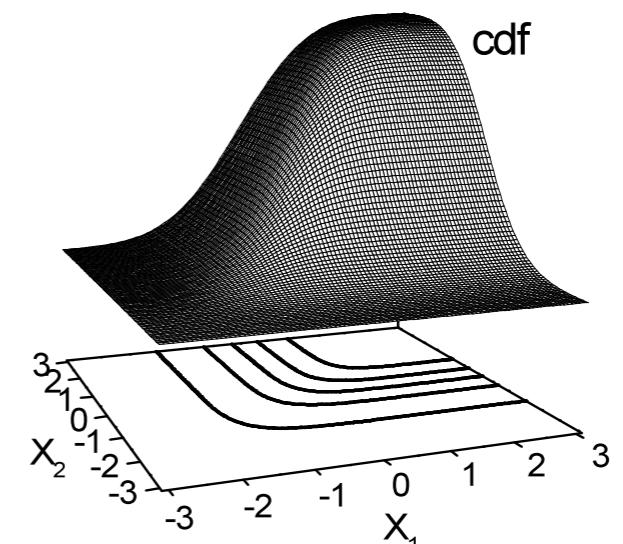
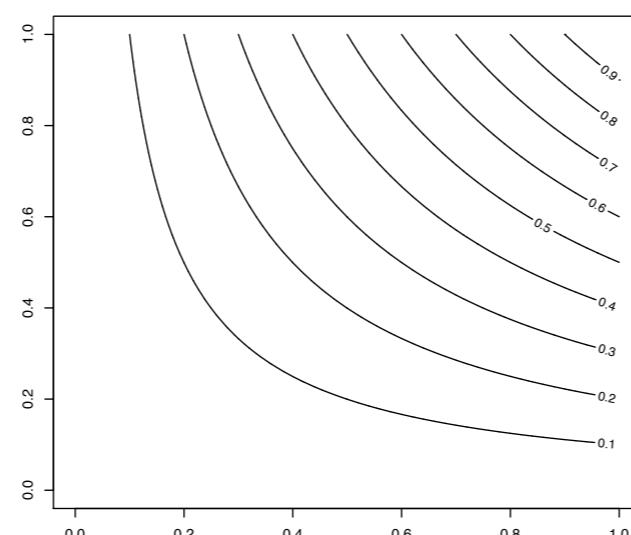
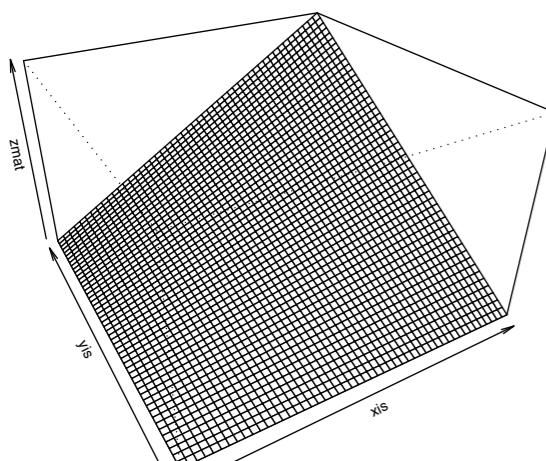
A d -dimensional copula is a c.d.f. on $[0, 1]^d$ with standard uniform marginal c.d.f.s.

EARLY CAREER COURSE

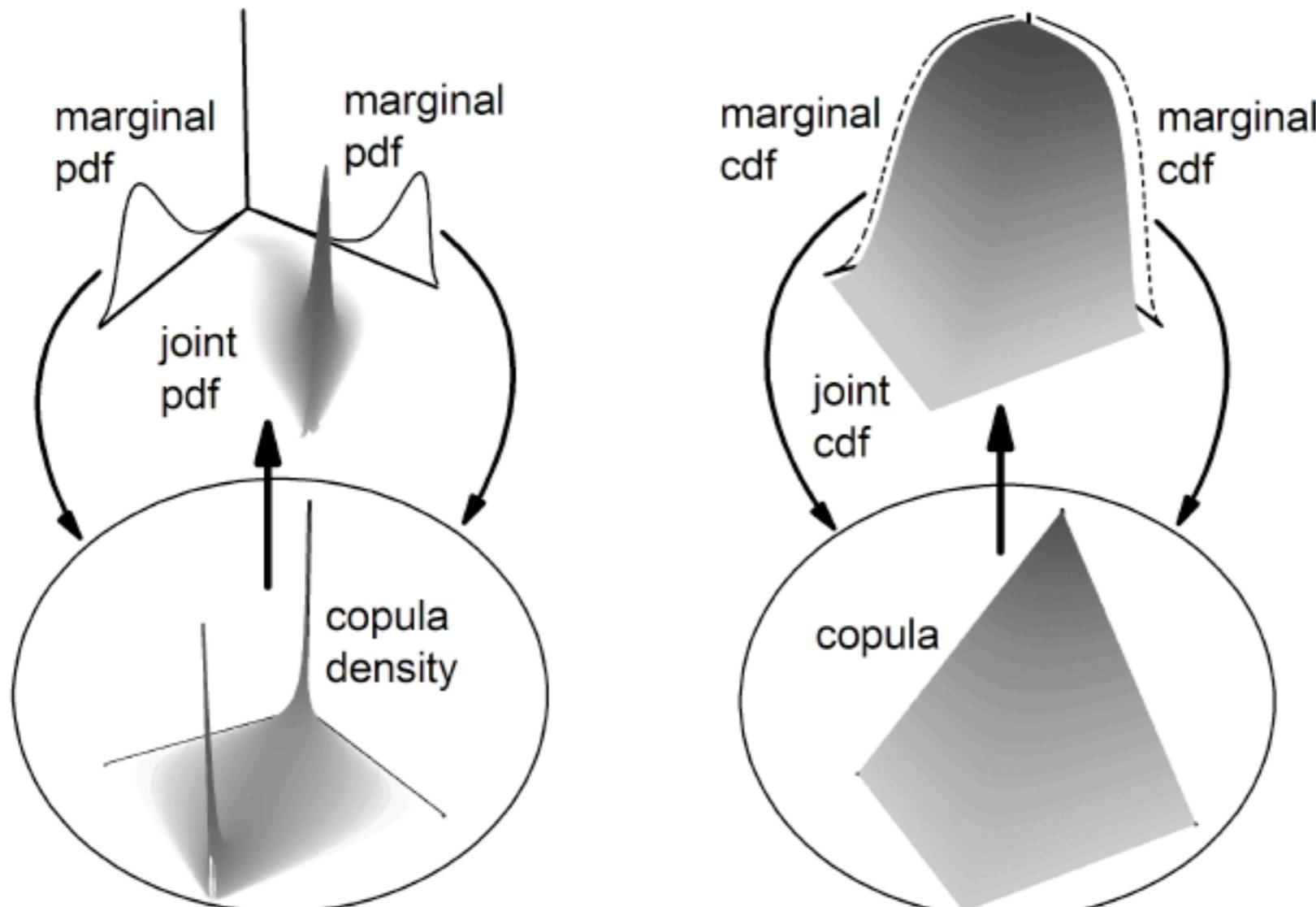
General Definition

A special multivariate distribution that allows to create any multivariate distribution

STAHY 2019
WORKSHOP




Technical definition of copula function

October, 19-20, 2019
Nanjing


Copula

A d -dimensional copula is a c.d.f. on $[0, 1]^d$ with standard uniform marginal c.d.f.s.

EARLY CAREER COURSE

Topic 2 - Copula function

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

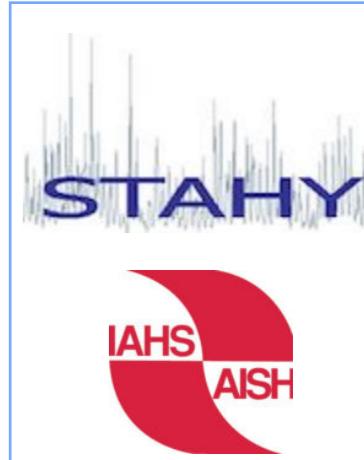
EARLY CAREER COURSE

Topic 2 - Copula function

Where and when I met copulas:

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing


EARLY CAREER COURSE

Topic 2 - Copula function

Where and when I met copulas:

2-copulas In Statistical Hydrology: Theoretical Models of Bivariate Dependence

G Salvadori, C de Michele - EGS General Assembly Conference Abstracts, 2002

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Where and when I met copulas:

2-copulas In Statistical Hydrology: Theoretical Models of Bivariate Dependence
G Salvadori, C de Michele - EGS General Assembly Conference Abstracts, 2002

Asymmetric copula in multivariate flood frequency analysis

Salvatore Grimaldi ^{a,*}, Francesco Serinaldi ^b

^a GEMINI Department, University of Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy

^b Department of Hydraulics, Transportations and Highways, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy

Received 29 December 2004; received in revised form 17 September 2005; accepted 18 September 2005

Available online 7 November 2005

Abstract

The univariate flood frequency analysis is widely used in hydrological studies. Often only flood peak or flood volume is statistically analyzed. For a more complete analysis the three main characteristics of a flood event i.e. peak, volume and duration are required. To fully understand these variables and their relationships, a multivariate statistical approach is necessary. The main aim of this paper is to define the trivariate probability density and cumulative distribution functions. When the joint distribution is known, it is possible to define the bivariate distribution of volume and duration conditioned on the peak discharge. Consequently volume-duration pairs, statistically linked to peak values, become available. The authors build trivariate joint distribution of flood event variables using the fully nested or asymmetric Archimedean copula functions. They describe properties of this copula class and perform extensive simulations to highlight differences with the well-known symmetric Archimedean copulas. They apply asymmetric distributions to observed flood data and compare the results those obtained using distributions built with symmetric copula and the standard Gumbel Logistic model.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Multivariate analysis; Fully nested copula; Asymmetric copula; Flood frequency analysis

1. Introduction

The main aim of the flood frequency analysis in hydrology is to determine the relationship hydrograph—return period. Until now, most of the literature investigated on flood peak univariate statistical procedures. However, concerning hydraulic works above all for flooding and inundation management, it is not enough to know information about flood peak only, but it is also useful to statistically value flood volume and duration. In order to have this information, joint cumulative distribution function (cdf) and probability density function (pdf) of involved variables is needed,

and so multivariate statistical analyses have to be applied.

In the last years, some multivariate approaches were introduced in hydrological and environmental applications. At the beginning, the most used joint cdf was the Gaussian one. It is widely studied in the literature and easy to apply, but it has the obvious limit that the marginal distributions must be normal. Goel et al. [18] and Yue [33] achieve this condition by preliminary data transformation through Box–Cox's formulas [2]. However, these transformations, do not always ensure that the recorded series follow a Gaussian distribution, and sometimes they provide significant distortions of sample statistical properties. Consequently, further bivariate distributions with non-normal margins have been topic of research. Bacchi et al. [1] apply Gumbel bivariate exponential model [21], with exponential marginals. Yue [35] suggests bivariate Gamma distribution in flood

* Corresponding author. Address: H2CU–Honors Center of Italian Universities, University of Rome 'La Sapienza', Via Eudossiana 18, 00184 Rome, Italy. Tel.: +39 061 357 326; fax: +39 061 357 356.
E-mail address: salvatore.grimaldi@unitus.it (S. Grimaldi).

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Where and when I met copulas:

2-copulas In Statistical Hydrology: Theoretical Models of Bivariate Dependence

G Salvadori, C de Michele - EGS General Assembly Conference Abstracts, 2002

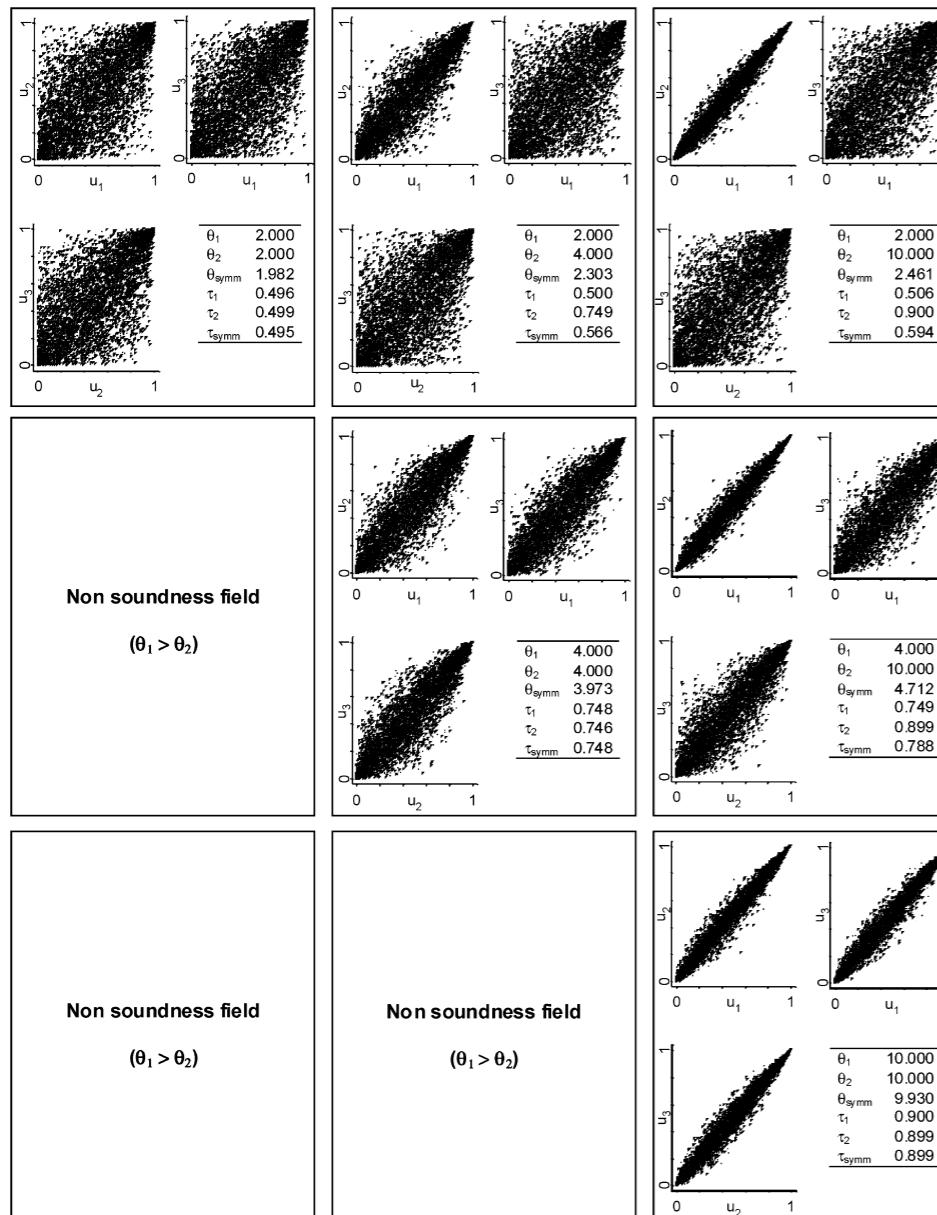


Fig. 1. Scatter plots of pairs (u_1, u_2) , (u_1, u_3) , (u_2, u_3) from triplets (u_1, u_2, u_3) simulated by asymmetric Gumbel copula for several h_1, h_2 . For $h_1 > h_2$ Eq. (4) is not a copula, so in lower triangular matrix there are not samples. For $h_1 = h_2$ asymmetric copula degenerate in symmetric one, then, in main diagonal, symmetric samples are shown. For $h_1 < h_2$ Eq. (4) is a proper asymmetric copula, so in upper triangular matrix asymmetric samples are shown.

Available online at www.sciencedirect.com

Advances in Water Resources

Advances in Water Resources

www.elsevier.com/locate/advwatres

Asymmetric copula in multivariate flood frequency analysis

Salvatore Grimaldi ^{a,*}, Francesco Serinaldi ^b

^a GEMINI Department, University of Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
^b Department of Hydraulics, Transportations and Highways, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy

Received 29 December 2004; received in revised form 17 September 2005; accepted 18 September 2005

Available online 7 November 2005

Abstract

The univariate flood frequency analysis is widely used in hydrological studies. Often only flood peak or flood volume is statistically analyzed. For a more complete analysis the three main characteristics of a flood event i.e. peak, volume and duration are required. To fully understand these variables and their relationships, a multivariate statistical approach is necessary. The main aim of this paper is to define the trivariate probability density and cumulative distribution functions. When the joint distribution is known, it is possible to define the bivariate distribution of volume and duration conditioned on the peak discharge. Consequently volume-duration pairs, statistically linked to peak values, become available. The authors build trivariate joint distribution of flood event variables using the fully nested or asymmetric Archimedean copula functions. They describe properties of this copula class and perform extensive simulations to highlight differences with the well-known symmetric Archimedean copulas. They apply asymmetric distributions to observed flood data and compare the results those obtained using distributions built with symmetric copula and the standard Gumbel Logistic model.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Multivariate analysis; Fully nested copula; Asymmetric copula; Flood frequency analysis

1. Introduction

The main aim of the flood frequency analysis in hydrology is to determine the relationship hydrograph—return period. Until now, most of the literature investigated on flood peak univariate statistical procedures. However, concerning hydraulic works above all for flooding and inundation management, it is not enough to know information about flood peak only, but it is also useful to statistically value flood volume and duration. In order to have this information, joint cumulative distribution function (cdf) and probability density function (pdf) of involved variables is needed,

and so multivariate statistical analyses have to be applied.

In the last years, some multivariate approaches were introduced in hydrological and environmental applications. At the beginning, the most used joint cdf was the Gaussian one. It is widely studied in the literature and easy to apply, but it has the obvious limit that the marginal distributions must be normal. Goel et al. [18] and Yue [33] achieve this condition by preliminary data transformation through Box-Cox's formulas [2]. However, these transformations, do not always ensure that the recorded series follow a Gaussian distribution, and sometimes they provide significant distortions of sample statistical properties. Consequently, further bivariate distributions with non-normal margins have been topic of research. Bacchi et al. [1] apply Gumbel bivariate exponential model [21], with exponential marginals. Yue [35] suggests bivariate Gamma distribution in flood

* Corresponding author. Address: H2CU-Honors Center of Italian Universities, University of Rome 'La Sapienza', Via Eudossiana 18, 00184 Rome, Italy. Tel.: +39 061 357 326; fax: +39 061 357 356.
E-mail address: salvatore.grimaldi@unitus.it (S. Grimaldi).

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Hydrological Sciences—Journal—des Sciences Hydrologiques, 51(2) April 2006

223

Design hyetographs analysis with 3-copula function

SALVATORE GRIMALDI^{1,3} & FRANCESCO SERINALDI²

¹ GEMINI Department, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo, Italy
salvatore.grimaldi@unitus.it

² Department of Hydraulics, Transportations and Highways, University of Rome “La Sapienza”,
Via Eudossiana 18, I-00184 Rome, Italy

³ HCU – Honors Center of Italian Universities, University of Rome “La Sapienza”, Via Eudossiana 18,
I-00184 Rome, Italy

Abstract A design hyetograph is a synthetic rainfall temporal pattern associated with a return period, usually determined by means of statistical analysis of observed mean rainfall intensity through intensity-duration-frequency (IDF) curves. Since the univariate approach is simple to apply and data availability is scarce, only the mean intensity of rainfall storm is usually analysed statistically. The other characteristics of rainfall storm, such as peak (maximum intensity), total depth and duration, are found indirectly throughout the several phases of hydrological analysis by suitable work assumptions. The aim of this paper is to apply a multivariate approach in order to analyse jointly observed data of critical depth, peak and total depth. In particular, bivariate analysis of peak–total depth conditioned on critical depth is developed using a 3-copula function to define the trivariate joint distribution. Following the proposed procedure, once design return period and related critical depth are selected, it is possible to determine—in a probabilistic way—peak and total depth, without advancing *a priori* hypotheses on the design hyetograph pattern.

Key words copula function; design hyetograph; intensity-duration-frequency; multivariate analysis; rainfall pattern

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Design hyetographs analysis with 3-copula function

SALVATORE GRIMALDI^{1,3} & FRANCESCO SERINALDI²

¹ GEMINI Department, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo, Italy
salvatore.grimaldi@unitus.it

² Department of Hydraulics, Transportations and Highways, University of Rome “La Sapienza”,
Via Eudossiana 18, I-00184 Rome, Italy

³ HCU – Honors Center of Italian Universities, University of Rome “La Sapienza”, Via Eudossiana 18,
I-00184 Rome, Italy

Abstract A design hyetograph is a synthetic rainfall temporal pattern associated with a return period, usually determined by means of statistical analysis of observed mean rainfall intensity through intensity-duration-frequency (IDF) curves. Since the univariate approach is simple to apply and data availability is scarce, only the mean intensity of rainfall storm is usually analysed statistically. The other characteristics of rainfall storm, such as peak (maximum intensity), total depth and duration, are found indirectly throughout the several phases of hydrological analysis by suitable work assumptions. The aim of this paper is to apply a multivariate approach in order to analyse jointly observed data of critical depth, peak and total depth. In particular, bivariate analysis of peak–total depth conditioned on critical depth is developed using a 3-copula function to define the trivariate joint distribution. Following the proposed procedure, once design return period and related critical depth are selected, it is possible to determine—in a probabilistic way—peak and total depth, without advancing *a priori* hypotheses on the design hyetograph pattern.

Key words copula function; design hyetograph; intensity-duration-frequency; multivariate analysis; rainfall pattern

Synthetic Design Hydrographs Based on Distribution Functions with Finite Support

Francesco Serinaldi¹ and Salvatore Grimaldi²

Abstract: The primary characteristics that influence the potential of defining a synthetic design hydrograph (SDH), are the hydrograph shape, peak discharge (Q_p), volume (V), and duration (D). This paper studies the advantages and shortcomings of using simple distribution functions with finite support (namely, beta and generalized standard two-sided power distributions) to represent and synthesize direct runoff hydrographs. The relationships among Q_p , V , D , and distribution parameters are explored on a few flood events selected by a recursive digital filter algorithm and an overthreshold approach. The results obtained indicate that the adopted procedure provides a good compromise between simplicity and accuracy for building SDHs with two assigned flood characteristics (e.g., Q_p and V) and a defined shape. DOI: [10.1061/\(ASCE\)HE.1943-5584.0000339](https://doi.org/10.1061/(ASCE)HE.1943-5584.0000339). © 2011 American Society of Civil Engineers.

CE Database subject headings: Hydrographs; Flood frequency; Base flow; Design.

Author keywords: Design hydrograph; Flood frequency analysis; Distributions with finite support; Baseflow separation.

Introduction

Recent advances made in flood-risk mapping procedures claim a more accurate definition of the hydrological input, namely, the

constructed by selecting the most representative flood hydrograph (e.g., the one with the highest peak or the largest volume) and rescaling its abscissa (duration) and ordinates (discharge values) to obtain the flood peak and/or the flood volume corresponding to

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Design hyetographs analysis with 3-copula function

SALVATORE GRIMALDI^{1,3} & FRANCESCO SERINALDI²

¹GEMINI Department, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo, Italy
salvatore.grimaldi@unitus.it

²Department of Hydraulics, Transportations and Highways, University of Rome “La Sapienza”,
Via Eudossiana 18, I-00184 Rome, Italy

³H2CU – Honors Center of Italian Universities, University of Rome “La Sapienza”, Via Eudossiana 18,
I-00184 Rome, Italy

Abstract A design hyetograph is a synthetic rainfall temporal pattern associated with a return period, usually determined by means of statistical analysis of observed mean rainfall intensity through intensity-duration-frequency (IDF) curves. Since the univariate approach is simple to apply and data availability is scarce, only the mean intensity of rainfall storm is usually analysed statistically. The other characteristics of rainfall storm, such as peak (maximum intensity), total depth and duration, are found indirectly throughout the several phases of hydrological analysis by suitable work assumptions. The aim of this paper is to apply a multivariate approach in order to analyse jointly observed data of critical depth, peak and total depth. In particular, bivariate analysis of peak–total depth conditioned on critical depth is developed using a 3-copula function to define the trivariate joint distribution. Following the proposed procedure, once design return period and related critical depth are selected, it is possible to determine—in a probabilistic way—peak and total depth, without advancing *a priori* hypotheses on the design hyetograph pattern.

Key words copula function; design hyetograph; intensity-duration-frequency; multivariate analysis; rainfall pattern

Synthetic Design Hydrographs Based on Distribution Functions with Finite Support

Francesco Serinaldi¹ and Salvatore Grimaldi²

Abstract: The primary characteristics that influence the potential of defining a synthetic design hydrograph (SDH), are the hydrograph shape, peak discharge (Q_p), volume (V), and duration (D). This paper studies the advantages and shortcomings of using simple distribution functions with finite support (namely, beta and generalized standard two-sided power distributions) to represent and synthesize direct runoff hydrographs. The relationships among Q_p , V , D , and distribution parameters are explored on a few flood events selected by a recursive digital filter algorithm and an overthreshold approach. The results obtained indicate that the adopted procedure provides a good compromise between simplicity and accuracy for building SDHs with two assigned flood characteristics (e.g., Q_p and V) and a defined shape. DOI: 10.1061/(ASCE)HE.1943-5584.0000339. © 2011 American Society of Civil Engineers.

CE Database subject headings: Hydrographs; Flood frequency; Base flow; Design.

Author keywords: Design hydrograph; Flood frequency analysis; Distributions with finite support; Baseflow separation.

Introduction

Recent advances made in flood-risk mapping procedures claim a more accurate definition of the hydrological input, namely, the

constructed by selecting the most representative flood hydrograph (e.g., the one with the highest peak or the largest volume) and rescaling its abscissa (duration) and ordinates (discharge values) to obtain the flood peak and/or the flood volume corresponding to

Hydrol. Earth Syst. Sci., 17, 1281–1296, 2013
www.hydrol-earth-syst-sci.net/17/1281/2013/
doi:10.5194/hess-17-1281-2013
© Author(s) 2013. CC Attribution 3.0 License.

Hydrology and
Earth System
Sciences
Open Access

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation

B. Gräler¹, M. J. van den Berg², S. Vandenberghe², A. Petroselli³, S. Grimaldi^{4,5,6}, B. De Baets⁷, and
N. E. C. Verhoest²

¹Institute for Geoinformatics, University of Münster, Weseler Str. 253, 48151 Münster, Germany

²Laboratory of Hydrology and Water Management, Ghent University, Coupure links 653, 9000 Ghent, Belgium

³Dipartimento di scienze e tecnologie per l’agricoltura, le foreste, la natura e l’energia (DAFNE Department),
University of Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy

⁴Dipartimento per la innovazione nei sistemi biologici agroalimentari e forestali (DIBAF Department), University of Tuscia,
Via San Camillo De Lellis, 01100 Viterbo, Italy

⁵Honors Center of Italian Universities (H2CU), Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy

⁶Department of Mechanical and Aerospace Engineering, Polytechnic Institute of New York University,
Six MetroTech Center Brooklyn, New York, 11201, USA

⁷Department of Mathematical Modelling, Statistics and Bioinformatics, Coupure links 653, 9000 Ghent, Belgium

Correspondence to: B. Gräler (ben.graeler@uni-muenster.de)

Received: 10 May 2012 – Published in Hydrol. Earth Syst. Sci. Discuss.: 31 May 2012

Revised: 27 February 2013 – Accepted: 9 March 2013 – Published: 2 April 2013

Abstract. Most of the hydrological and hydraulic studies highlighting theoretical and practical issues of multivariate

Topic 2 - Copula function

Design hyetographs analysis with 3-copula function

SALVATORE GRIMALDI^{1,3} & FRANCESCO SERINALDI²

¹GEMINI Department, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo, Italy
salvatore.grimaldi@unitus.it

²Department of Hydraulics, Transportations and Highways, University of Rome “La Sapienza”,
Via Eudossiana 18, I-00184 Rome, Italy

³H2CU – Honors Center of Italian Universities, University of Rome “La Sapienza”, Via Eudossiana 18,
I-00184 Rome, Italy

Abstract A design hyetograph is a synthetic rainfall temporal pattern associated with a return period, usually determined by means of statistical analysis of observed mean rainfall intensity through intensity-duration-frequency (IDF) curves. Since the univariate approach is simple to apply and data availability is scarce, only the mean intensity of rainfall storm is usually analysed statistically. The other characteristics of rainfall storm, such as peak (maximum intensity), total depth and duration, are found indirectly through the several phases of hydrological analysis by suitable work assumptions. The aim of this paper is to apply a multivariate approach in order to analyse jointly observed data of critical depth, peak and total depth. In particular, bivariate analysis of peak–total depth conditioned on critical depth is developed using a 3-copula function to define the trivariate joint distribution. Following the proposed procedure, once design return period and related critical depth are selected, it is possible to determine—in a probabilistic way—peak and total depth, without advancing *a priori* hypotheses on the design hyetograph pattern.

Key words copula function; design hyetograph; intensity-duration-frequency; multivariate analysis; rainfall pattern

Synthetic Design Hydrographs Based on Distribution Functions with Finite Support

Francesco Serinaldi¹ and Salvatore Grimaldi²

Abstract: The primary characteristics that influence the potential of defining a synthetic design hydrograph (SDH), are the hydrograph shape, peak discharge (Q_p), volume (V), and duration (D). This paper studies the advantages and shortcomings of using simple distribution functions with finite support (namely, beta and generalized standard two-sided power distributions) to represent and synthesize direct runoff hydrographs. The relationships among Q_p , V , D , and distribution parameters are explored on a few flood events selected by a recursive digital filter algorithm and an overthreshold approach. The results obtained indicate that the adopted procedure provides a good compromise between simplicity and accuracy for building SDHs with two assigned flood characteristics (e.g., Q_p and V) and a defined shape. DOI: 10.1061/(ASCE)HE.1943-5584.0000339. © 2011 American Society of Civil Engineers.

CE Database subject headings: Hydrographs; Flood frequency; Base flow; Design.

Author keywords: Design hydrograph; Flood frequency analysis; Distributions with finite support; Baseflow separation.

Introduction

Recent advances made in flood-risk mapping procedures claim a more accurate definition of the hydrological input, namely, the

constructed by selecting the most representative flood hydrograph (e.g., the one with the highest peak or the largest volume) and rescaling its abscissa (duration) and ordinates (discharge values) to obtain the flood peak and/or the flood volume corresponding to

Hydrol. Earth Syst. Sci., 17, 1281–1296, 2013
www.hydrol-earth-syst-sci.net/17/1281/2013/
doi:10.5194/hess-17-1281-2013
© Author(s) 2013. CC Attribution 3.0 License.

Hydrology and
Earth System
Sciences
Open Access

Advances in Water Resources 90 (2016) 116–133

Catchment compatibility via copulas: A non-parametric study of the dependence structures of hydrological responses

S. Grimaldi^{a,1,*}, A. Petroselli^b, G. Salvadori^{c,2}, C. De Michele^d

^aDIBAF Department, University of Tuscia, Via San Camillo de Lellis SNC, Viterbo I-01100, Italy

^bDAFNE Department, University of Tuscia, Via San Camillo de Lellis SNC, I-01100 Viterbo, Italy

^cDipartimento di Matematica e Fisica, Università del Salento, Provinciale Lecce-Arnesano, P.O.Box 193, Lecce I-73100, Italy

^dDepartment of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano I-20133, Italy

ARTICLE INFO

Article history:

Received 22 October 2015

Revised 1 February 2016

Accepted 4 February 2016

Available online 28 February 2016

Keywords:

Copula

Catchment compatibility

Rainfall-runoff transformation

Non-parametric test

ABSTRACT

The similarity of catchment responses is a fundamental issue for regionalization studies, and hydrograph attributes (i.e., Discharge Peak, Volume, and Duration) can reveal the signature and the synthesis of local scale processes. Here, we focus the attention on the “compatibility” between catchments, viz. on the possibility to transfer, from one catchment to another, the information about the dependence structures at play. In particular, we statistically investigate the possible relationships between the features of different Basin Scenarios (characterized via the Concentration Time T_c and the Curve Number CN) and the corresponding dependence structures ruling the joint statistics of Discharge, Volume, and Duration. Given a large set of synthetic runoff time series, generated via a rainfall-runoff model, recent non-parametric tests, based on empirical copulas, are used to compare the dependence structures associated with different soil uses and concentration times. The results indicate how the hydrological properties may affect the dependence structure. The outcomes of the investigation could be particularly effective in two practical applications: (1) for determining the degree of compatibility of the dependence structures associated with different basin scenarios, and (2) for enriching scanty data bases, in order to improve the estimation of multivariate copulas.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

UNIVERSITÀ
DEGLI STUDI DELLA
TUSCIA

Topic 2 - Copula function

Grimaldi, S., Serinaldi, F. Asymmetric copula in multivariate flood frequency analysis (2006) *Advances in Water Resources*, 29 (8), pp. 1155-1167. **Cited 221 times.**

Gräler, B., Van Den Berg, M.J., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., Verhoest, N.E.C. Multivariate return periods in hydrology: A critical and practical review focusing on synthetic design hydrograph estimation (2013) *Hydrology and Earth System Sciences*, 17 (4), pp. 1281-1296. **Cited 116 times.**

Serinaldi, F., Bonaccorso, B., Cancelliere, A., Grimaldi, S. Probabilistic characterization of drought properties through copulas (2009) *Physics and Chemistry of the Earth*, 34 (10-12), pp. 596-605. **Cited 107 times.**

Grimaldi, S., Serinaldi, F. Design hyetograph analysis with 3-copula function (2006) *Hydrological Sciences Journal*, 51 (2), pp. 223-238. **Cited 92 times.**

Serinaldi, F., Grimaldi, S. Fully nested 3-copula: Procedure and application on hydrological data (2007) *Journal of Hydrologic Engineering*, 12 (4), pp. 420-430. **Cited 74 times.**

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Serinaldi, F., Grimaldi, S. Synthetic design hydrographs based on distribution functions with finite support (2011) *Journal of Hydrologic Engineering*, 16 (5), pp. 434-446. **Cited 40 times.**

Grimaldi, S., Petroselli, A., Salvadori, G., De Michele, C. Catchment compatibility via copulas: A non-parametric study of the dependence structures of hydrological responses (2016) *Advances in Water Resources*, 90, pp. 116-133. **Cited 22 times.**

Topic 2 - Copula function

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Compared to the Topic 1, Copula topic was surely a success!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Compared to the Topic 1, Copula topic was surely a success!

Why?

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Compared to the Topic 1, Copula topic was surely a success!

Why?

I had a vision!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Compared to the Topic 1, Copula topic was surely a success!

Why?

I had a vision!

in research:
studying a topic looking to the future
studying a topic looking to the practical application (we are not statistician!)

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Topic 2 - Copula function

Compared to the Topic 1, Copula topic was surely a success!

Why?

I had a vision!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

in research:
studying a topic looking to the future
studying a topic looking to the practical application (we are not statistician!)

EARLY CAREER COURSE

in communication:
sharing with and meeting the community

My experience in communicating statistical hydrology research

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

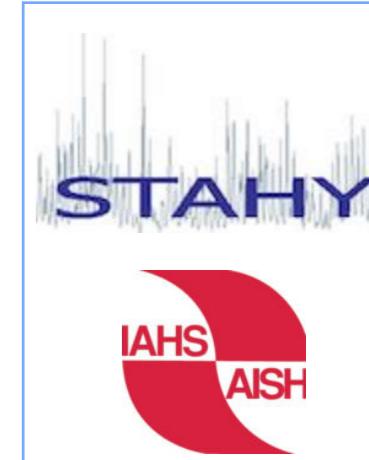
STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper


Communication is not to publish an excellent paper

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

Be aware that, nowadays, we have:

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

Be aware that, nowadays, we have:

- around 40 Journals related to hydrology

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

Be aware that, nowadays, we have:

- around 40 Journals related to hydrology
- every days around 50 papers are published on hydrology topics

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

Be aware that, nowadays, we have:

- around 40 Journals related to hydrology
- every days around 50 papers are published on hydrology topics

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

Be aware that, nowadays, we have:

- around 40 Journals related to hydrology
- every days around 50 papers are published on hydrology topics

So, our publication is a drop in the sea.

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

Be aware that, nowadays, we have:

- around 40 Journals related to hydrology
- every days around 50 papers are published on hydrology topics

So, our publication is a drop in the sea.

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

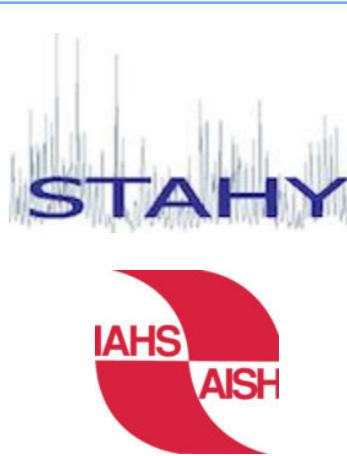
Be aware that, nowadays, we have:

- around 40 Journals related to hydrology
- every days around 50 papers are published on hydrology topics

So, our publication is a drop in the sea.

STAHY 2019

WORKSHOP


October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

This is only the starting point of an effective communication and divulgation.

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

Be aware that, nowadays, we have:

- around 40 Journals related to hydrology
- every days around 50 papers are published on hydrology topics

So, our publication is a drop in the sea.

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

This is only the starting point of an effective communication and divulgation.

My experience in communicating statistical hydrology research

Communication is not to publish a paper

Communication is not to publish an excellent paper

Publications are a necessary condition but not sufficient

Be aware that, nowadays, we have:

- around 40 Journals related to hydrology
- every days around 50 papers are published on hydrology topics

So, our publication is a drop in the sea.

STAHY 2019

WORKSHOP

October, 19-20, 2019

Nanjing

EARLY CAREER COURSE

This is only the starting point of an effective communication and divulgation.

Concerning Statistical Hydrology the situation is even worse since typically our papers, and the topic in general, are considered boring and not easy to understand.

My experience in communicating statistical hydrology research

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

My ingredients for an effective communication either to the scientific and professional community:

- Identify a clear aim in your research that combines theoretical, methodological and, above all, practical implications;
- A long term practical aim should be visible;
- MEET the community.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

My ingredients for an effective communication either to the scientific and professional community:

- Identify a clear aim in your research that combines theoretical, methodological and, above all, practical implications;
- A long term practical aim should be visible;
- **MEET** the community.

MEET the community is crucial:

- read papers;
- review papers;
- participate to the topical workshops;
- participate to short courses;
- share your research.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

My ingredients for an effective communication either to the scientific and professional community:

- Identify a clear aim in your research that combines theoretical, methodological and, above all, practical implications;
- A long term practical aim should be visible;
- MEET the community.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

MEET the community is crucial:

- read papers;
- review papers;
- participate to the topical workshops;
- participate to short courses;
- share your research.

EARLY CAREER COURSE

Read and learn are crucial for your culture and for understanding the community needs

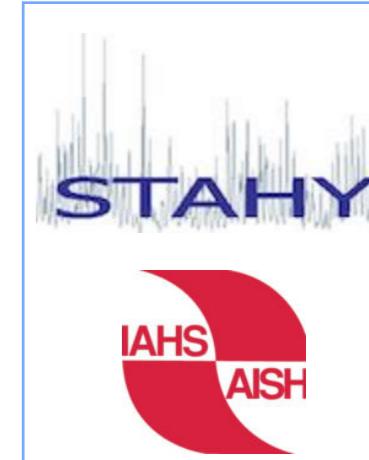
My experience in communicating statistical hydrology research

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research


For communicating to the **professional community** we should keep in mind some points:

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research


For communicating to the **professional community** we should keep in mind some points:

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

A stakeholder is not able to read scientific journals (too advanced).

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

A stakeholder is not able to read scientific journals (too advanced).

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

A stakeholder is not able to read scientific journals (too advanced).

Once you have completed a series of publications you could think that your research topic is closed, however, it is not!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

A stakeholder is not able to read scientific journals (too advanced).

Once you have completed a series of publications you could think that your research topic is closed, however, it is not!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

A stakeholder is not able to read scientific journals (too advanced).

Once you have completed a series of publications you could think that your research topic is closed, however, it is not!


At that moment the technological transfer should start.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

A stakeholder is not able to read scientific journals (too advanced).

Once you have completed a series of publications you could think that your research topic is closed, however, it is not!

At that moment the technological transfer should start. Translating your research in favor to the professional community it is pivotal for a successful communication of your research.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

A stakeholder is not able to read scientific journals (too advanced).

Once you have completed a series of publications you could think that your research topic is closed, however, it is not!

At that moment the technological transfer should start. Translating your research in favor to the professional community it is pivotal for a successful communication of your research.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

For communicating to the **professional community** we should keep in mind some points:

The theoretical and methodological gap is immense (I could be biased by my experience in Italy).

A stakeholder is not able to read scientific journals (too advanced).

Once you have completed a series of publications you could think that your research topic is closed, however, it is not!

At that moment the technological transfer should start. Translating your research in favor to the professional community it is pivotal for a successful communication of your research.

The real impact factor of your research is not given by ISI-Web but by the professional community!!!!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

How can we interact with the professional community?

- through related Associations, giving seminars, short courses
- providing them user-friendly software packages
- translating and simplifying complex methodologies
- clearly identifying the added value of your methodologies.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

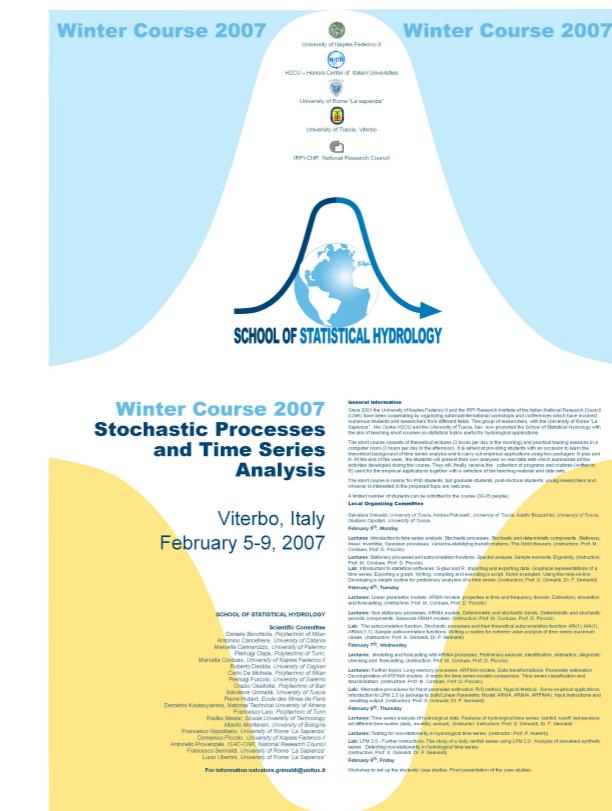
EARLY CAREER COURSE

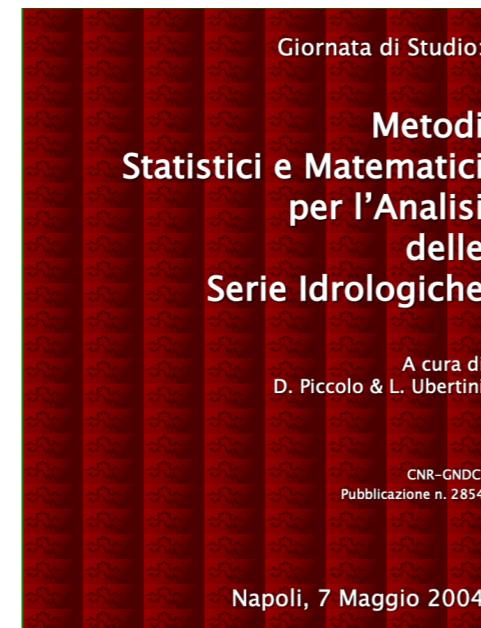
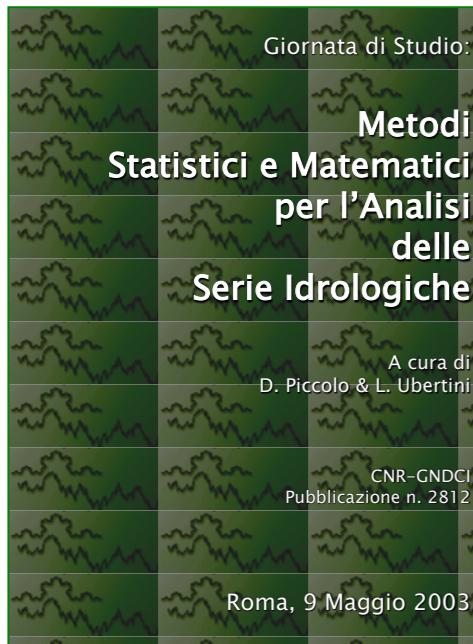
My experience in communicating statistical hydrology research

How can we interact with the professional community?

- through related Associations, giving seminars, short courses
- providing them user-friendly software packages
- translating and simplifying complex methodologies
- clearly identifying the added value of your methodologies.

STAHY 2019
WORKSHOP





October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Of course these are long term activities appropriate when you complete a research topic.

It is not a PhD, of PostDoc activity however it is useful to know it in advance to have a VISION.

My experience in communicating statistical hydrology research

- Being involved in organisation of topical national conferences
- Proposing and pro-actively organising sessions in international conferences (EGU, AGU, IAHS)
- Organising Short courses

**STAHY 2019
WORKSHOP**

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

My experience in communicating statistical hydrology research

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

→ Short Courses on Copula Function

SHORT COURSE "Copula Function: Theory and Practice"
Columbia University + NYU-Poly + PACE University, **New York**, 2009

SHORT COURSE "Copula Function: Theory and Practice" - 2nd Edition,
Università degli Studi della Tuscia, **Viterbo**, Italy, 2011

SHORT COURSE "Copula for hydrological application" 2013
Leibniz University Hannover, Institute of Water Resources Management, Germany, **Hannover**

SHORT COURSE "Copula for hydrology and climate applications"
The Henry Samueli School of Engineering, University of California **Irvine**, USA, 2014

SHORT COURSE "Copula for hydrology and environmental science"
Université de Pau et des Pays de l'Adour, **Pau**, France. 2015

SHORT COURSE "Copula for hydrology and environmental science"
Università degli Studi della Tuscia, **Pieve Tesino**, Italy. 2016

SHORT COURSE "Copula for hydrology and environmental science"
Hohai University, **Nanjing**, China. 2017

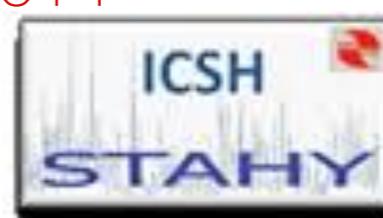
My experience in communicating statistical hydrology research

Working Group created in 2007

STAHY

Capri 2008

Tunis 2012


Taormina 2010

Kos 2013

Abu Dhabi 2014

2011 - from STAHY to ICSH

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

ICSH-STAHY Workshop 2015 Addis Ababa, Ethiopia

ICSH-STAHY Workshop 2016 Quebec City, Canada

ICSH-STAHY Workshop 2017 Warsaw, Poland

ICSH-STAHY Workshop 2018 Adelaide, South Australia

Conclusions

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Conclusions

- For effectively communicating in statistical hydrology we need to correctly plan our research topic having a vision for the future and for the practical evolution of the methods.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Conclusions

- For effectively communicating in statistical hydrology we need to correctly plan our research topic having a vision for the future and for the practical evolution of the methods.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Conclusions

- For effectively communicating in statistical hydrology we need to correctly plan our research topic having a vision for the future and for the practical evolution of the methods.
- Meet the scientific community and share your ideas in order to adapt your plan and vision!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Conclusions

- For effectively communicating in statistical hydrology we need to correctly plan our research topic having a vision for the future and for the practical evolution of the methods.
- Meet the scientific community and share your ideas in order to adapt your plan and vision!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Conclusions

- For effectively communicating in statistical hydrology we need to correctly plan our research topic having a vision for the future and for the practical evolution of the methods.
- Meet the scientific community and share your ideas in order to adapt your plan and vision!
- a paper is the necessary starting point of research communication. The most important piece of the puzzle, but only one piece of it.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Conclusions

- For effectively communicating in statistical hydrology we need to correctly plan our research topic having a vision for the future and for the practical evolution of the methods.
- Meet the scientific community and share your ideas in order to adapt your plan and vision!
- a paper is the necessary starting point of research communication. The most important piece of the puzzle, but only one piece of it.

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Conclusions

- For effectively communicating in statistical hydrology we need to correctly plan our research topic having a vision for the future and for the practical evolution of the methods.
- Meet the scientific community and share your ideas in order to adapt your plan and vision!
- a paper is the necessary starting point of research communication. The most important piece of the puzzle, but only one piece of it.
- Once your research reaches the maturity, meet (directly or indirectly) the professional community in order to guarantee a real impact of your research!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

Conclusions

- For effectively communicating in statistical hydrology we need to correctly plan our research topic having a vision for the future and for the practical evolution of the methods.
- Meet the scientific community and share your ideas in order to adapt your plan and vision!
- a paper is the necessary starting point of research communication. The most important piece of the puzzle, but only one piece of it.
- Once your research reaches the maturity, meet (directly or indirectly) the professional community in order to guarantee a real impact of your research!

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

STAHY 2019
WORKSHOP

October, 19-20, 2019
Nanjing

EARLY CAREER COURSE

GRAZIE

謝謝

谢谢

