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Computer models are essential tools in hydrology 
to advance our science and inform decision-making



We use increasingly detailed computer models 
at ever larger scales and finer resolutions 

Washington et al PTRS 2008

Model complexity is challenging as we quickly lose 
our ability to understand the model behavior

Does the model provide the 
"right" answer?

Does it provide the "right" answer 
for the "right" reason?

What are the priorities for 
improving the model? 



All modelling studies follow essentially a very similar 
process

conceptualization 
> perceptual model

translation into equations 
> mathematical model

implementation into a computer code 
> computer model

calibration
> computer model tailored 
to a specific site/system

evaluation/prediction

function Q_sim = hymod_sim(par,prec,evap)
Sm =max(eps,par(1));beta =par(2);alfa=par(3);

Rs=par(4);Rf=par(5); N=length(prec);
for t=1:N 

F = 1 - (1-sm(t)/Sm)^beta ; Pe(t) = F*prec(t) ; 
sm_temp = max(min(sm(t) + prec(t) - Pe(t),Sm),0); 
Pe(t)=Pe(t)+max(sm(t)+prec(t)-Pe(t)-Sm,0)+...

min(sm(t)+prec(t)-Pe(t),0);
W = min(abs( sm(t)/Sm ),1) ; Ea(t)= W*evap(t) ; 
sm(t+1) = max(min(sm_temp-Ea(t),Sm),0); 

Ea(t)= Ea(t)+ max(sm_temp-Ea(t)-Sm,0)+...
min(sm_temp-Ea(t),0);

QsL(t) = Rs * sL(t) ;
sL(t+1) = sL(t) + (1-alfa)*Pe(t) - QsL(t) ;
sF1(t+1) = sF1(t) + alfa*Pe(t) - Rf * sF1(t) ;
QsF(t) = Rf * sF1(t) ;

end
Q_sim = QsL+QsF;

All modelling studies follow essentially a very similar 
process

conceptualization 
> perceptual model

translation into equations 
> mathematical model

implementation into a computer code 
> computer model

calibration
> computer model tailored 
to a specific site/system

evaluation/prediction

< uncertain assumptions/epistemic uncertainty

< (some more) uncertain assumptions / 
computational constraints

< uncertain choices (+ bugs)

< lack of data or uncertain data 
[both inputs & outputs]
à uncertain parameters

< (some more) lack of data or uncertainty in 
data 

.... which is paved with uncertainties and 
'subjective' choices



Examples of uncertainty 
in model structure 

and implementation

Example of 
uncertainty in data
(or lack of data)



As a consequence of these multiple and potentially 
interacting uncertainties …
The model structure (and/or its numerical implementation) may be inadequate

The model parameters may be poorly estimated or ineffective

The model predictions may be inaccurate for any of the above reasons, 
or because the (well identified) model is forced by erroneous input data

… and in either case,

We may over/under-estimate the model’s prediction accuracy because of errors in 
the output observations
or simply not have observations to compare with

So how do we go about constructing, testing 
("validating") and using computer models?
We ignore uncertainty and pretend it is not there

or

[1] we quantify uncertainty in model outputs, so we have an idea of "how 
wrong/variable" model predictions are given our level of uncertainty/subjectivity in 
the model set-up à Uncertainty Analysis

[2] we identify which sources of input uncertainty mostly contribute to output 
uncertainty, so we know which of them are very critical (and we should tackle first) 
à Sensitivity Analysis



[1] quantifying uncertainty in model outputs: 
propagation methods
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[2] measuring relative contributions to output 
uncertainty: sensitivity analysis
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Aims and scope of this talk

_ discussion of sources of uncertainty
_ Uncertainty Analysis (UA) based on ‘forward-propagation’ (Monte Carlo)
_ a ‘flavour’ of some techniques for (global) Sensitivity Analysis (SA)
_ critical choices in carrying out UA/SA
_ examples of what we can learn from UA/SA



EXAMPLE APPLICATIONS

WHY
doing UA/SA?

If we have output observations to compare with, which 
model parameters control the predictions accuracy?

Example application to the SWAT model

Zadeh et al EMS 2017



How much is controlled by the model parameters vs 
parameters of the input data pre-processing?

Application to spatially-distributed rainfall-runoff model for semiarid regions

Yatheendradas et al WRR 2008 

parameters of the 
rainfall-runoff model

initial conditions of the 
rainfall-runoff model

rain depth 
bias factor

How do dominant controls (parameters) vary across 
places?
Application to lumped rainfall-runoff model

Van Werkhoven et al WRR 2008



If we do not have output observations, can we at least ensure 
that the ‘right’ parameters control the model response?

Application to a karst groundwater recharge model

Site  1

Sensitivity of annual groundwater recharge

Vegetation parameters Soil properties parameters

Sarrazin et al GMD 2018

Site  2

Which other modelling choices also control the 
model predictions, and when, where and how much?
Application to a flood inundation model
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If we use the model for ‘what-if’ analysis, what are 
the controls the model (system) output?

Le Cozannet et al EMS 2015Application to coastal flood risk model

So in summary we can use UA/SA to:

_ support model calibration

_ quantify importance of data vs parameter uncertainty > identify priorities for 
uncertainty reduction

_ test if the model behaves consistently with our expectations (“validation”)

_ identify key controls of models/systems

...



WORKFLOW FOR UA/SA

HOW
to do UA/SA?

Workflow for UA/SA
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Sources of uncertainty in a model
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Characterizing the sources of uncertainty

_ Probability Distribution Functions (PDFs)
_ Ranges / list of possible values
_ Order of magnitude
_ Sign/direction of change
_ Governing factors, key indicators and relationships

(describe pre-conditions that would lead to 
different values of the uncertain factor)

[Kadlikar et al CRG 2005]

Increasing uncertainty in 
uncertainty characterization



In this lecture we will focus on uncertainties
“that can be sampled”
_ Probability Distribution Functions (PDFs)
_ Ranges / list of possible values
_ Order of magnitude
_ Sign/direction of change
_ Governing factors, key indicators and relationships

(describe pre-conditions that would lead to 
different values of the uncertain factor)

uncertainties that
can be sampled

x1

x 2

There are two very different approaches: sampling 
around a baseline, or across the full variability space
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In the ‘global’ approach, there are different ways to define 
sensitivity indices from the input-output sample
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_ Correlation between 
inputs and output

_ Contribution to 
variance of output

_ ...

In the ‘global’ approach, some key questions around 
the sampling approach arise:
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Definition of input variability space: 
different approaches (and sources of information) can be 
used, depending on the type of uncertain inputs
Uncertain assumptions/implementation choices:

> discrete description: list of all possible values/choices

Uncertain data and parameters:

> continuous description: probability distribution or ranges
based on 

_ typical errors in data collection and interpolation [McMillan et al HP 2012]
_ expert judgements [Morris et al EMS 2014]
_ knowledge about the specific catchment

Sometimes the range/distribution of the uncertain 
inputs is univocally defined by their own meaning, 
but most often different definitions are possible
Example for a lumped rainfall-runoff model (Hymod)

The repartition coefficient
between fast and slow routing flows 
varies between 0 and 1 by definition

The maximum soil capacity
varies between 0 and an upper 
bound that may be difficult to define
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When different definitions of the ranges/distributions
are possible, the choice made can significantly condition 
UA/SA results
Example from SA of a crop growth model

simulations with the WOFOST model. In general, it appears from
the plots that a sample size of greater than 1025 is required to reach
the final converged value for the most parameters. The sample size
of 2049 yields themost stable sensitivity indices.When sample size
is small, i.e., only 65, the sensitivity index shows strong variations
and cannot reach a stable convergence result for the three pa-
rameters. For most parameters, fewer than 65 samples are not
sufficient to reach a stable value. This situation can be noted for the
sensitivity index value of SPAN, FOTB1.1, and RDRSTB1.5001. In addi-
tion, the error grows gradually smaller as the sample size increases.

For the parameter with the highest sensitivity, such as SPAN, the
final stable sensitivity index value is attained rather slowly, and
greater fluctuations are observed. The sensitivity is able to obtain
convergence for this type of parameter under the condition of large
sample size. However, those insensitive parameters are more prone
to the minor fluctuations that can appear with increasing sample
size. For those insensitive parameters, the sensitivity analysis can
quickly obtain convergence.

3.2. Impacts of parameter variation range on the parameter
sensitivity analysis

According to the above numerical experiments on sample size,
the frequency of the interest parameter was set to 128 in this and
the following sections. The impacts of the parameter variation
range on the parameter SA are shown in Fig. 2. When adopting
different parameter variation ranges, the sensitive parameters vary
as well. For the first parameter variation range, four parameters had
the highest sensitivities to yield, i.e., the life span of leaves growing
at 35 !C (SPAN), the efficiency of conversion into a storage organ
(CVO), the lower threshold temperature for aging of leaves (TBASE),
and the light use efficiency of a single leaf (T ¼ 40 !C)(EFFTB40).
Their main sensitivity indices all exceeded 0.05, and their total ef-
fects reached 85%, with SPAN showing a 47% effect on the yield
variance. SPAN had twice as much influence on the total variance
than the second-ranked parameter. However, for this case, certain
parameters did not show any influence on the final yield. For the

second parameter variation range, four parameters, i.e., the relative
maintenance respiration rate of stems (RMS), the SPAN, the specific
leaf area (DVS ¼ 0.78)(SLATB0.78), and the extinction coefficient for
diffuse visible light (DVS ¼ 2.0)(KDIFFTB2.0), were identified as
those showing the most important effects on yield, with a total
effect of 74%. The reduction factor of the AMAX (DVS ¼
2.0)(TMPFTB2.0) and EFFTB40 were also noted as sensitive param-
eters. The conclusions of the second parameter set were same as
those in Ceglar’s studies.

In general, regardless of the parameter space, the parameter
SPAN is identified by the EFAST method as the parameter with the
higher influence on the yield simulation. The parameters are
related to specific biological processes. The important biological
processes for yield formation differ together with the variation of
the parameter range. For example, in the first variation range, only
carbon assimilation and dry matter conversion dominate the
highest parameter ranks, whereas in the second variation range,
maintenance respiration plays the most critical role. The above
results show that the parameter variation range was the main in-
fluence factor on its sensitivity.

In both cases, the most sensitive parameters were those of the
leaf expansion and crop respiration processes. Because the leaf (one
of the most important organs) is able to intercept light and absorb
energy to form the basis of yield formation, the parameters that
address the leaf expansion processes are highly important. The
respiration parameters are defined as the dry mass consumption
ratio relating to the plant respiration and indirectly influencing the
accumulation of biomass and its conversion to yield. Therefore, the
respiration parameters are also highly important, especially for the
stem maintenance respiration rate, which ranks at the top due to
the high matter consumption induced by a high stem dry weight.

In addition, several parameters cause markedly different output
variations in the two cases, andmany parameters do not impact the
yield, as they have main sensitivity indices less than 0.001. These
parameters are primarily related to the stem death and root
properties. The research region is located in an irrigation agricul-
ture zone, where irrigation water is able to meet the requirements

Fig. 2. Effects of the different parameter variation ranges on the parameter SA: (a) #10% perturbation of the corn parameter, (b) provided by Ceglar et al.

J. Wang et al. / Environmental Modelling & Software 48 (2013) 171e182 177

[Wang et al. EMS 2013] 

Sensitivity of simulated crop yield
based on ‘literature’
parameter ranges

...
based on ‘expanded’
parameter ranges

The choice of the ranges also depend on the 
purpose of the UA/SA (what question is asked)
Example from 
SA of a karst 
groundwater 
recharge
model 
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Sensitivity of simulated recharge 
to variability across places
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Choice of the sampling strategy: 
most UA/SA methods use ‘generic’ sampling strategies 
but some methods require a ‘tailored’ strategy

x1

x 2

x1

x 2

Tailored strategies 
are e.g. the ’radial’ OAT strategy 
[Campolongo et al. CPC 2011] 
for the Elementary Effect Test

Generic strategies 
include e.g. Latin 
Hypercube sampling or 
Quasi-random sequences

As for the sample size (N), we expect it to increase 
with the number of uncertain inputs (M). 
However the proportionality rate varies significantly 
from one method to another, and from one 
application of the same method to another
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Workflow for UA/SA
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Hydrological models typically provide predictions for a 
range of variables, often distributed over time and space

However, GSA is typically applied to a subset
of these variables, and often after aggregation 
over time/space via: 

_ a performance metric against observations 
(e.g. RMSE of streamflows)

or

_ a statistic of the model predictions
(e.g. maximum predicted streamflow over the domain)

Hence, a key choice in GSA of hydrological 
models is that of the output metric



Typically, different output metrics will exhibit different 
sensitivities, hence the choice of which output metrics to 
consider is crucial
Application to a forest growth model

[Song et al. EcM 2012] 

We can also consider spatially or temporally distributed 
outputs, and derive time series or spatial patterns of 
sensitivity indices
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Workflow for UA/SA
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Many methods exist, which rely on different 
definitions of ‘sensitivity’ and are more or less 
suitable for specific problems or purposes
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Given that we compute sensitivity indices from a sample 
of inputs and outputs, our GSA results implicitly depend 
on the sample we used

An obvious question then is: 
how much different would the results be if we used a different sample?
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In order to assess the robustness of our sensitivity 
estimates to the chosen sample, without re-running the 
model, we can use bootstrapping
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If the confidence intervals of our sensitivity indices are 
not "small enough", we need to increase the sample size

black line: mean sensitivity index
bar: 90% confidence interval(N = 160)

[Sarazzin et al EMS 2016]

The definition of "small enough" 
depends on the goal of our GSA

black line: mean sensitivity index
bar: 90% confidence interval(N = 160)

[Sarazzin et al EMS 2016]

Convergence of screening (N = 320) Convergence of ranking (N = 3200)



CONCLUSIONS

UA & SA are very useful techniques to investigate 
the propagation of uncertainty through our models 
and hence support their calibration, improvement, 
evaluation and use for inference or decision-making

www.safetoolbox.info
(matlab, R and Python)

Many methods are available 
as well as (free and open 
source) numerical packages 
and toolboxes

model
calibration

model
evaluation

model
refinement

(incl. simplification)

model use for
prediction & 

decision-making

The key to a successful 
application often is in
making ’good’ set-up choices 
(definition of input variability 
space, choice of outputs, etc)
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