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Computer models are essential tools in hydrology
to advance our science and inform decision-making
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We use increasingly detailed computer models
at ever larger scales and finer resolutions
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Model complexity is challenging as we quickly lose
our ability to understand the model behavior

Does the model provide the
"right" answer?

Does it provide the "right" answer
for the "right" reason?

What are the priorities for
improving the model?
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All modelling studies follow essentially a very similar

process

University of
BRISTOL

conceptualization
> perceptual model

translation into equations
> mathematical model

implementation into a computer code
> computer model

calibration
> computer model tailored
to a specific site/system

evaluation/prediction

precipitation ‘ﬁ evapotranspiration

————————— A

External surface
runoff

Diffuse and concentrated
groundwater recharge

1. 12(2), 0

€ 1P _o5-5)=0
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function Q_sim = hymod_sim(par,prec,evap)
Sm =max(eps,par(1l));beta =par(2);alfa=par(3);
Rs=par (4) ;Rf=par(5); N=length(prec);
for t=1:N
F =1 - (1-sm(t)/Sm)"beta ; Pe(t) = F*prec(t) ;
sm_temp = max(min(sm(t) + prec(t) - Pe(t),Sm),0);
Pe(t)=Pe(t)+max(sm(t)+prec(t)-Pe(t)-Sm,0)+...
min(sm(t)+prec(t)-Pe(t),0);
W = min(abs( sm(t)/Sm ),1) ; Ea(t)= Wrevap(t) ;
sm(t+l) = max(min(sm_temp-Ea(t),Sm),0);
Ea(t)= Ea(t)+ max(sm_temp-Ea(t)-Sm,0)+...
min(sm_temp-Ea(t),0);

0sL(t) = Rs * sL(t) ;

SL(t+l) = sL(t) + (l-alfa)*Pe(t) - OsL(t) ;
SF1(t+1) = sF1(t) + alfa*Pe(t) - Rf * SFI(t) ;
QsF(t) = Rf * sFI(t) ;

end
Q_sim = QsL+0sF;

All modelling studies follow essentially a very similar
process.... which is paved with uncertainties and

University of
Bl BRISTOL

conceptualization
> perceptual model

translation into equations
> mathematical model

implementation into a computer code
> computer model

calibration
> computer model tailored
to a specific site/system

evaluation/prediction

'subjective'’ choices

< uncertain assumptions/epistemic uncertainty
< (some more) uncertain assumptions /
computational constraints

< uncertain choices (+ bugs)

< lack of data oruncertain data

[both inputs & outputs]

- uncertain parameters

< (some more) lack of data oruncertainty in
data




oo s Examples of uncertainty

Hydrol. Process. (2013)
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Ancient numerical daemons of conceptual hydrological modeling:
2. Impact of time stepping schemes on model analysis
and prediction

Dmitri Kavetski' and Martyn P. Clark®
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[1] Despite the widespread use of conceptual hydrological models in environmental
research and operations, they remain frequently implemented using numerically unreliable
methods. This paper considers the impact of the time stepping scheme on model analysis
(sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based
uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski,
2010), which focused on numerical accuracy, fidelity, and computational efficiency.
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As a consequence of these multiple and potentially
mteractlng uncertainties ...

The model structure (and/or its numerical implementation) may be inadequate
The model parameters may be poorly estimated or ineffective

The model predictions may be inaccurate for any of the above reasons,
or because the (well identified) model is forced by erroneous input data

... and in either case,

We may over/under-estimate the model’s prediction accuracy because of errors in

the output observations
or simply not have observations to compare with

S
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So how do we go about constructing, testing
("validating") and using computer models?

We ignore uncertainty and pretend it is not there @@

or

[1] we quantify uncertainty in model outputs, so we have an idea of "how
wrong/variable" model predictions are given our level of uncertainty/subjectivity in
the model set-up > Uncertainty Analysis

[2] we identify which sources of input uncertainty mostly contribute to output
uncertainty, so we know which of them are very critical (and we should tackle first)
- Sensitivity Analysis

n
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[1] quantifying uncertainty in model outputs:

propagation methods

[1] characterize
uncertainty of input
factors

_ / % TTTTTTTTTTTT Il INPUT FACTORS ----,

[2] propagate
uncertainties
through the model

[3] summarise and
communicate output
uncertainty

SIMULATION RESULTS -
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[2] measuring relative contributions to output

uncertainty: sensitivity analysis

[1] characterize
uncertainty of input
factors

'&‘ﬁé % INPUT FACTORS ----,

[2] propagate
uncertainties
through the model

[3] summarise and
communicate output
uncertainty

SIMULATION RESULTS -

i raw _g| Pre- s @é forcing i < i

! observations” [ _Processing | . inputs : = !

R TR EEEEEE R 'i time ! : longitude! i
B T : ;
P P2 :'& COMPUTER _:9 '
: spatial 7 MODEL | e !
! -l resolution ”! I L !
s | i
i | ~==- OUTPUT METRICS T
: Yy = a1x1 + exp(x2 — az) : : :
: y = a1 + azx1 + exp(a2) : : “-g /\ ) Eé
: Y = a1 + azry + 25 : : :

Y

University of
AL BRISTOL

[4] identify key
contributors to
output uncertainty

Contributors to
uncertainty
of output 1

structure

para-
meters ' spati
patial
' A grid

uncertainty in
forcing inputs

f

sensitivity
analysis




Aims and scope of this talk

_ discussion of sources of uncertainty

_ Uncertainty Analysis (UA) based on ‘forward-propagation’ (Monte Carlo)
_ a ‘flavour’ of some techniques for (global) Sensitivity Analysis (SA)

_ critical choices in carrying out UA/SA

_ examples of what we can learn from UA/SA
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doing UA/SA?

EXAMPLE APPLICATIONS

If we have output observations to compare with, which
model parameters control the predictions accuracy?

Example application to the SWAT model

0

w B w
=} S =}
Z0
T

o

-
o

Stream flow (m*s™?)
N
o

90

500 600 700

0 100 200 00 400
Time step [day]

3ISN-Xapu| AYAisuag |0qos

Zadeh et al EMS 2017

80




How much is controlled by the model parameters vs
parameters of the input data pre-processing?

Application to spatially-distributed rainfall-runoff model for semiarid regions
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How do dominant controls (parameters) vary across

places?

Application to lumped rainfall-runoff model
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If we do not have output observations, can we at least ensure
that the ‘right’ parameters control the model response?

Application to a karst groundwater recharge model

precipitation ‘ﬁ evapotranspiration

External surface
runoff

Diffuse and concentrated
groundwater recharge

4

Sarrazin et al GMD 2018
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sensitivity

Sensitivity of annual groundwater recharge
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Which other modelling choices also control the
model predictions, and when, where and how much?

Application to a flood inundation model

Uncertainty in predicted flood extent
(% of ceIIs where water depth >0.10 m)
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If we use the model for ‘what-if’ analysis, what are
the controls the model (system) output?

Application to coastal flood risk model Le Cozannet et al £M5 2015
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So in summary we can use UA/SA to:

_ support model calibration

_ quantify importance of data vs parameter uncertainty > identify priorities for
uncertainty reduction

_ test if the model behaves consistently with our expectations (“validation”)

_ identify key controls of models/systems

What has Global Sensitivity Analysis ever done for us? A systematic — P —
review to support scientific advancement and to inform policy-making in EARTH-SCIENCE
earth system modelling

Thorsten Wagener'-2 and Francesca Pianosi'?
Department of Civil Engineering, University of Bristol, UK

2Cabot Institute, University of Bristol, UK IERALIE
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WORKFLOW FOR UA/SA
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Workflow for UA/SA

[1] characterize [2] propagate [3] summarise and [4] identify key
uncertainty of input uncertainties communicate output contributors to
factors through the model uncertainty output uncertainty
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Sources of uncertainty in a model

s
RAY

raw pre- —| /AL . | forcing (incl. boundary
=) m conditions)

observations~ |_Processing . inputs
time
E=NE
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spatial
-l resolution

Yy = a121 + exp(xs — az)
Y = a1 + axx) + exp(xz)

Y =a1+axzy +25°
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Characterizing the sources of uncertainty

_ Probability Distribution Functions (PDFs)

_ Ranges / list of possible values

_ Order of magnitude

_ Sign/direction of change

_ Governing factors, key indicators and relationships

(describe pre-conditions that would lead to
different values of the uncertain factor)

Increasing uncertainty in
uncertainty characterization

[Kadlikar et al CRG 2005]
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In this lecture we will focus on uncertainties
“that can be sampled”

_ Probability Distribution Functions (PDFs) o
_ Ranges / list of possible values %o

— Order of magnitude 2| 0oo0°
_ Sign/direction of change o o ©
_ Governing factors, key indicators and relationships o

(describe pre-conditions that would lead to
different values of the uncertain factor)
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There are two very different approaches: sampling
around a baseline, or across the full variability space

SA investigates the effects F SA investigate the effects
of variation of uncertain inputs from of variation of uncertain iniuts

a point across their entire

input factor x3
input factor x3

e 1 1 1 1 1
o I I
ERAL e B
5090 : -
gax | [ !
£ : i
-40-20 0 +20 +40 X4 Xo X3
variation of output y input factors
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In the ‘global’ approach, there are different ways to define
sensitivity indices from the input-output sample

Local SA investigates the effects SA investigate the effects
O 9 Lhe 9
of variation of uncertain inputs from of variation of uncertain inputs
a baseline point across their entire ﬁ
3
2 - < S
S <]
2 = S
8 A ¥ 8 S
3 £ H =
gl §\Q’ £ output
INput facy Q
X 8 y = x1,%2,%s)
» 1 _ Correla'&ion between
5 inputs and output
S x| P P
= X I 5 _ Contribution to
§ X2 | 0 variance of output
"~  -40-20 0 +20 +40 X4 Xo X3
variation of output y input factors -
’é University of
3 BRISTOL

In the ‘global’ approach, some key questions around
the sampling approach arise:

Local SA investigates the effects Global SA investigate the effects

of variation of uncertain inputs from of variation of uncertain inputs a. how do we

a baseline point across their entire variability space define the
variability
space?

b. how many
points do we
sample?
(sample size)

input factor x3
+

input factor x3

: 3
"NPut factor x,—/&

: - 2> 1 c. how do we
g )>(<1 i 28 . place them?
- 3 0w > .
32 X 0 5.2 (sampling strategy)
(= o 0
"~  -40-20 0 +20 +40 X4 Xo  Xa
variation of output y input factors

'é University of
[ BRISTO!




Definition of input variability space:
different approaches (and sources of information) can be
used, depending on the type of uncertain inputs

Uncertain assumptions/implementation choices:

> discrete description: list of all possible values/choices

Uncertain data and parameters:

> continuous description: probability distribution or ranges
based on

_ typical errors in data collection and interpolation [McMillan et al #P2012]
_ expert judgements [Morris et al EMS 2014]
_ knowledge about the specific catchment

Y

Bl University of
[BEI BRISTOL

Sometimes the range/distribution of the uncertain
inputs is univocally defined by their own meaning,
but most often different definitions are possible

Example for a lumped rainfall-runoff model (Hymod)

The repartition coefficient
evaporation  rainfall between fast and slow routing flows

ﬁ U varies between 0 and 1 by definition
D (1-a)D
Sk ? See E> St =
. aD FAST FLOW ROUTING streamflow

SOIL MOISTURE T

ACCOUNTING
SLOW FLOW ROUTING

S_max

The maximum soil capacity
varies between 0 and an upper
bound that may be difficult to define

n
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When different definitions of the ranges/distributions
are possible, the choice made can significantly condition

UA/SA results

Example from SA of a crop growth model

—=— Main sensitivity index
—o— Total sensitivity index
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Sensitivity of simulated crop yield
based on fliterature’
parameter ranges

based on fexpanded’
parameter ranges

[Wang et al. EMS2013]

The choice of the ranges also depend on the
purpose of the UA/SA (what question is asked)

Example from

Constrained parameter ranges

Unconstrained parameter ranges

SA of a karst Q 20 ®  soil parameters A
grou ndwater g @ vegetation parameters 1/

£ o ' °
recharge 3 =10 Vo i
model 2 % .

/[ o atan ) o ¢ /

T 0 r : |

% 20 ‘

£ry o %

[SEES soi

> o Y ol . °

[m] o f,

0 r"

Sensitivity of simulated recharge Sensitivity of simulated recharge

to uncertainty about a specific

Sarrazin et al GMD 2018
place
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Choice of the sampling strategy:
most UA/SA methods use ‘generic’ sampling strategies
but some methods require a ‘tailored’ strategy

Generic strategies Tailored strategies
include e.g. Latin are e.g. the 'radial’ OAT strategy
Hypercube sampling or [Campolongo et al. CPC2011]
Quasi-random sequences for the Elementary Effect Test
O © o0
©) S &0
o O o @)
x O ®) O x O"Q
o Q
@) O :
0-0
X4 X1
BAKE University of
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As for the sample size (N), we expect it to increase
with the number of uncertain inputs (M).

However the proportionality rate varies significantly
from one method to another, and from one
application of the same method to another

1000000 - w ‘ ‘ ‘ ‘ [0 vBsA
= > FAST
7 O EET

¢
10000 ._l//‘/
1000 //./O/,

N (# model evaluations)
S
o
o
o
o
[ |

O

o

[Pianosi et al. EMS 2016]
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Workflow for UA/SA

[1] characterize [2] propagate [3] summarise and
uncertainty of input uncertainties communicate output
factors through the model uncertainty
INPUT MODEL 7~ SIMULATION RESULTS -
SAMPLING EXECUTION | 3 !
: _Iongitud» i
— N i
! time H
7=~ OUTPUT METRICS T
VNI
i output 1 output 2 i
'é Universityof o TTmmmmmmm e
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Hydrological models typically provide predictions for a
range of variables, often distributed over time and space

However, GSA is typically applied to a subset
of these variables, and often after aggregation
over time/space via:

_ a performance metric against observations
(e.g. RMSE of streamflows)

or

_ a statistic of the model predictions
(e.g. maximum predicted streamflow over the domain)

Hence, a key choice in GSA of hydrological

models is that of the output metric Z
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Typically, different output metrics will exhibit different
sensitivities, hence the choice of which output metrics to

consider is crucial

Application to a forest growth model

avDBH

Q standVol

Output variables
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[Song et al. EcM2012]

We can also consider spatially or temporally distributed
outputs, and derive time series or spatial patterns of

sensitivity indices

1.0
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Total order indices
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Offshore extreme values

Climate change scenario
Global sea-level rise

Maximum Water Depth
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[l Spatial resolution

[ Channel friction

[ Floodplain friction
Forcing hydrograph
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Workflow for UA/SA

[1] characterize [2] propagate [3] summarise and

uncertainty of input uncertainties communicate output

factors through the model uncertainty

INPUT MODEL
SAMPLING EXECUTION
para- structure
meters tial
' Do

7 uncertalnty in
forcmg inputs

7~~" OUTPUT METRICS ~--
% -

NS

output 1 output 2

pdf
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Many methods exist, which rely on different
definitions of ‘sensitivity’ and are more or less
suitable for specific problems or purposes

Specific purpose
Screening Ranking  Mapping

s [
. Elementary Effects Test

» ; Multiple-starts (or Morris method)
S © | derivatives
= ~ L DELSA
= s
© Monte-Carlo Regional Sensitivity
5 = filtering Analysis (RSA) Contents lists available at ScienceDirect

x
o) \ . .
< S r Environmental Modelling & Software
g ~ | Correlation & correlation - ;
- Regression Ana|y5i5 coefficient CART ELSEVIER journal homepage: www.elsevier.com/locate/envsoft
(e} N
> 4 .
g s density-based A . . . :
< > Variance-based distribution-based Sensitivity analysis of environmental models: A systematic review
5 3 & Density-based with practical workflow
z Sy Variance-Based L . . .

— (or Sobol’ method) Francesca Pianosi **, Keith Beven , Jim Freer <, Jim W. Hall ¢, Jonathan Rougier °,
AN David B. Stephenson ¢, Thorsten Wagener * #

M = number of input factors
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Given that we compute sensitivity indices from a sample
of inputs and outputs, our GSA results implicitly depend

on the sample we used

o O o
o 0 oo 0
o[ oo o
O o o
o
o 5 © OO0
04 o )
. . . 0“5 9 o >
An obvious question then is: o © 0% 1 YUS
; 0 o
how much different would the INput factor N
result ﬁe If we used a different X2 .S
sample:

sensitivity
of output y
o v =

x
x
)
x
<)
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In order to assess the robustness of our sensitivity
estimates to the chosen sample, without re-running the

model, we can use bootstrapping

bootstrap
resamples
o %,
= (o ° o ) = sensitivity
00, 9 indices
(original) 9@
inputs-output ° o °~0 L
|:|'> o sensitivity
sagnple ® °o indices

SOURCE: Reading Local Group
of the Royal Statistical Society

Mean sensitivity indices
5% and 95% quantiles




If the confidence intervals of our sensitivity indices are
not "small enough", we need to increase the sample size

"""""" e black line: mean sensitivity index
(N =160) bar: 90% confidence interval

Sensitivity
]
1
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The definition of "small enough”
depends on the goal of our GSA

"""""" (N=160)| black line: mean sensitivity index
bar: 90% confidence interval
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CONCLUSIONS
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UA & SA are very useful techniques to investigate
the propagation of uncertainty through our models
and hence support their calibration, improvement,

evaluation and use for inference or decision-making Many methods are available

as well as (free and open
source) numerical packages
and toolboxes

=

model
calibration

model
evaluation

2!

model use for
prediction &
decision-making

model

refinement
(incl. simplification)

The key to a successful
application often is in

making 'good’ set-up choices
(definition of input variability www.safetoolbox.info
space, choice of outputs, etc) (matlab, R and Python)
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