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Aims of this session

1. Provide an introduction to extreme value theory.

2. Look at some hot topics in the academic field of extreme
value theory and try to understand how these approaches can
be applied.

3. To outline some common pitfalls when undertaking an
extreme value analysis.

4. To provide you with a set of packages and functions that can
be used to undertake and extreme value analysis.
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My background

e |I'm the Natural Hazards & Environment manager at the EDF
Energy R&D UK Centre.

e Previously worked from 2015-2017 as a researcher on extreme
weather and coastal flooding.

e My PhD was titled Extreme value modelling of heatwaves and
was jointly supervised by Jonathan Tawn at Lancaster
University and Simon Brown at the Met Office.

e Main skills used during PhD were extreme value statistics
applied to environmental problems.
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What is extreme value analysis?

A statistical approach for analysing extreme data values of a
variable of interest.

e First mentioned in 1928 by Fisher and Tippett.

Formalised into statistical methods by Gumbel in paper in
1958.

Use for environmental problems introduced in the 1950's.

L\ (N .

Left: Roland Fisher; Centre: Leonard Tippett; Right: Emil Gyrsﬁfb
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Why use extreme value analysis?

e Provides a mathematically rigorous framework for modelling
extreme values.

e Data are by definition sparse.

e Empirical approaches based upon the observed data an only
provide accurate results within the range of the observed data
— we often wish to extrapolate to higher levels.

o Different statistical models can lead to different tail
behaviours — can often be too light-tailed and underestimate
the probability of extreme events.

e Many statistical models are driven by average values as
opposed to extreme values. o (E:GU ,,,,,,,,
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When to use EVA?

When the variable of interest is stochastic (as opposed to
deterministic) — e.g. storm surge v/, tide X.

When physical models are unavailable or unrealistic.

When interested in obtaining estimates for extreme quantities
that lie outside the range of the observed data.

When there are at least 20-30 years of observations.

s
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Modelling univariate extreme values

e Two main approaches exist for modelling univariate
(one-dimensional) extreme values:
e Block maxima
e Threshold exceedances

Block maxima methods were first to be developed.

Threshold exceedance methods are most commonly used now.

Modelling strategies for both assume observations are
independent and identically distributed (iid).
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My recurring rainfall data example

e Daily rainfall accumulations at a location in south-west
England recorded over the period 1914-1962.

e Data taken from Coles (2001) and freely available in ismev
package in R.

Rainfall Accumulation (mm)

T T T T T T
1952 1954 1956 1958 1960 1962

Year

11/71
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Block maxima

e Model the maxima of time periods of a certain length.

e Annual maxima often taken to remove the effect of
seasonality.

50
.

40

30

20

Rainfall Accumulations (mm)

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

Year O .
o (EGUs-
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Generalized extreme value distribution

Let My, ..., M, be random variables for the cluster maxima from n

time blocks. The generalized extreme value (GEV) distribution can
be used to model these maxima such that

G(x) = P(M < x) = exp{— [1 y <X;“>]1+/§},

for 1 +&(x — /o) > 0 where

e /1 € (—00,00) is the location parameter
e 0 €[0,00) is the scale parameter

o { € (—00,00) is the shape parameter
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More detail on parameters

e The shape parameter £ is a very important parameter in EVA.

e Controls the heaviness of the tail = directly affects the
extremes.

e The shape parameter of the GEV covers three different types
of tail behaviour:

e ¢ > 0 - Fréchet distribution — Heavy upper tail
e ¢ < 0 - Negative Weibull distribution — Bounded upper tail
e £ =0 - Gumbel distribution — Exponential upper tail
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Return levels

e We are most interested in estimating the severity of extreme
events.

e One way to summarise this is in terms of the T-year return
level z1.

e This is the event that happens once in every T years (i.e. has
annual exceedance probability 1/T).

For the GEV distribution fitted to annual maxima

p—g[1—{-log(1-1/T)}| i &0
u—olog{—log(1—1/T)} if &=

zr =
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Effect of different shape parameters

(; 2(;0 4(;0 6(;0 8(;0 10‘00 1‘ 1‘0 1 l‘)O 10‘00 1 0(‘)00
x Return level
Left: GEV distribution function Right: Return level curves

Black: £ =0 Red: £ >0 Blue: £ <0

éor (EGusz=-
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Threshold exceedances

e Model exceedances above a fixed high threshold.

e More efficient as more data are available but not necessarily
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Generalized Pareto distribution

Let Xi,..., X, be a sequence of random variables. The distribution
G of the exceedances above a high threshold v is a generalized
Pareto distribution (Davison & Smith 1990) of the form

)

1/
G(X):P(ng|><>u):1<1+§X_“>

oy )y

for x > u where

e 0, € [0,00) is the scale parameter

o { € (—00,00) is the shape parameter
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More detail on parameters

e The scale parameter for the GPD is threshold-dependent. For
any higher threshold v > u

Uv:Uu+€(V_u)

e The scale parameter can be modified to make it threshold
invariant.

e The shape parameter of the GPD is equal to the shape
parameter of the corresponding GEV distribution.

e Threshold choice is important.

e Equivalent formulation is available in terms of Poisson process
(REF) i Eou=

19/71
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Choosing the threshold

A bias variance trade-off exists when choosing the threshold.

We wish to set the threshold low to use as many data points
as possible in our analysis.

Need the threshold set high enough for underlying limit
assumptions of EV model to hold.

Threshold too high = not enough data, high uncertainty.

Threshold too low = non extreme data modelled, model not

suitable. -
S:g‘g @Ua:?:; ======
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Choosing the threshold

e Two standard diagnostics exist for threshold choice:
e Mean residual life (MRL) plot.
e Parameter stability plots.

MRL plot Parameter stability plots
& § o ngm\mibiﬁ,/*;'%\%\:\}/
2 2 z‘o 2‘5 3‘0 3‘5 4‘0 4‘5 50
é Threshold
. o mEN
b o
l; Z‘D 40 6‘0 8‘0 v 2‘0 2‘5 3‘0 3‘5 40 4‘5 50
u Threshold
s Ev==

e Other approaches exists (e.g. Northrop et al. (2016))

21/71
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Return levels

e Calculated in a similar way as for the GEV distribution.

e Since data are conditional upon having exceeded a high
threshold we need to undo this conditioning by multiplying by
Ay =P(X > u).

e The m-observation return level is given below

u+oy/E[(mAy)s —1] if £#0
u+ oylog (mAy) if £=0,

m =

where m must be sufficiently large to ensure that x,, > u. If nt is
defined as the number of observations in a year then T = m/ng

€DF @G U fines
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Comparison of approaches

Rainfall Accumulations (mm)

T T T T T T T T
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
Year

e Threshold exceedance approach allows more data to be used
in an analysis.
e Clustering may occur so independence assumption may not.
& €S
always hold.

23 /71
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Declustering

e When fitting an extreme value distribution to data an
important assumption made is that data are independent and
identically distributed (IID).

e When using block maxima (for a sufficient block length) this
is satisfied.

e This could be an issue for threshold exceedances tend to
occur in clusters.

e If we model using all the exceedances it is likely that we will be
overconfident and our confidence intervals will be too narrow.

e To solve this we usually undertake declustering to extract the
peaks over the threshold (POTSs). éor (E:GU ****
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Runs method declustering

The most well used declustering approach is called the runs
method.

A cluster is commenced by an exceedance of a threshold w.

A cluster lasts until we have observed R consecutive
observations below u.

R is known as the run length.

The peak of each cluster is extracted and a statistical model
is fitted to the POTs.
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run length 1

Time
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Runs method - run length 2

"‘. uropean
Time o ok < EGU st
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Runs method - run length 4

Time
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Declustering

e The number of clusters we define is dependent on the run
length.

e In some situations the run length can be defined by the
environmental context - i.e. if we expect a certain type of
event to last around 6 observations this may suggest R = 6.

e Other methods are available including an automatic approach
called intervals declustering (Ferro & Segers 2003).
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Inference for univariate extreme value models

e Many different approaches exist for fitting both types of
extreme value model:

Maximum likelihood — most commonly used.

L-moments — faster in certain situations.

Bayesian methods — modern approach, more computationally
expensive.

e Many packages exist in R to fit extreme value models:

evd - Basic functions for an EVA

extRemes - Slightly more advanced set of functions
ismev - Companion package to Coles (2001)

POT - Peaks over threshold modelling

evir - More basic functions for an EVA
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Confidence intervals

e Confidence intervals can be obtained in several ways:

e Delta method
e Profile likelihood

e Bootstrapping (parametric and non-parametric)

e When looking at extreme quantities these intervals can get
quite wide - this motivates methods for pooling data to obtain
narrower intervals.

e Often profile likelihood or bootstrap intervals are preferred.
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Multivariate EVA - motivation

e Univariate EVA is a useful tool when considering the extremes
of a single variable.

e Using univariate EVA we can provide estimates of return levels
for one variable at a single site.

e In many situations we are interested in the probability of two
or more hazards occurring at the same time or extremes at
maore than one location.

e Can also use multivariate EVA to analyse:

e Extremes occurring at multiple locations.
o Extremes that persist through time. o3 (E:G-U ::::
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Examples of combinations

Storm surge (m)
Temperature (deg C)

T T T

Wave height (m) Precipitation (mm)

Left Wave and surge height (m) measurements at a single location
off the south-west coast of England.

Right Daily maximum temperatures (°C) and rainfall (mm) at
Waddington in east of UK - only looking at summer days... @U
(June-August) 1949-2015. &
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Summarising dependence

We need measures to understand whether variables are
dependent.

The most common measure is the correlation coefficient p.

e Positive - both variables increase together
o Negative - as one variable increases, the other decreases.

But estimation of the correlation is driven by non-extreme
data.

We need to define a different measure of extremal
dependence.
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Summarising extremal dependence

A commonly used measure in multivariate EVA is the
extremal dependence measure x(u) (Coles et al. 1999).

e For two variables (X, Y') with a sufficiently high threshold u

X(u) =P(Y >u| X >u)

Different values of x(u) are associated with different levels of
dependence

e x(u) =1 = perfect dependence
o x(u)=P(Y >u) LN independence

X(u) allows us to understand about the relationship between
variables at high levels. o3 @U ::::

A
€DF
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For the data sets introduced previously

Wave and surge Rainfall and temperature
0'2 Old 0‘6 ﬂfﬂ 1‘(] 0‘2 0‘4 0‘6 O‘E 1‘0
Threshold quantile Threshold quantile
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e Previous analysis gives estimates of joint probability within
the scope of the data.

e Need to reliably estimate extremal dependence at higher
levels.

e Different options for multivariate EVA
(i) Copulas - large class of models, scale to higher dimensions

poorly (Nelson 2007).

(i) Joint tail model - more flexible than copulas, scales to higher
dimensions poorly (Ledford & Tawn 1997).

(iii) Conditional extremes approach - flexible, scales
well (Heffernan & Tawn 2004). ~‘-C
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Pictorial representation of MVE models

Wave height (m)

Red: Modelling threshold

Storm surge (m)

Wave height (m)

Orange: Critical level
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Conclusion

Available packages in R

e Copulas:

e copula - Fit a wide selection of different copulas. Contains

functions to fit extreme value copulas.

e evd - Fit bivariate extreme value distributions with different

dependence structures.

e Joint tail model: No R packages explicitly for this.

e Conditional extremes:

e texmex - Fit the conditional extremes approach in multivariate

setting.

References
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Results for data examples

e Set v as the critical level associated with the 10™* annual
exceedance probability

e x(v) =0.01 for wave and surge data

e x(v) = 0 for rainfall and temperature data

e With conditional extremes model can derive conditional
quantiles, i.e. Surge|Wave> v or Temp|Rain> v

e 0.759m (0.522, 1.040) for wave and surge data
e 18.2°C (15.1, 21.2) for rainfall and temperature data

e Many other measures can be obtained using the conditional
extremes approach.
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Multivariate EVA - summary

e Multivariate extreme value models can be used to model
hazard combinations - usage depends on factors such as data
availability.

e Can be seen that data can have different behaviour in the
extremes than at lower levels.

e Different choices are available conditional extremes models
provide the most flexible choice.

e These approaches can be used to model dependence over
space and time.
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Spatial pooling - Motivation

e Univariate EVA methods are well used by academics and
industry practitioners.

e As just presented, the extension to multivariate EVA is now
well established in academic literature and starting to be used
more in applied contexts.

e But how can we improve our methods for estimating return
levels?

e Here, we shall briefly focus on two areas:

e Regional frequency analysis - Hosking & Wallis (2005), Weiss
et al. (2014)

e Spatial Bayesian extreme value models - Reich et al. (2013’;.@Um ::::

Gt
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RFA Motivation

e The estimation of return levels is usually still undertaken using
univariate EVA methods, i.e. we are only using data from a
single site.

e In practice, we will have a lot more data available to us. Any
chance to use more data should also be encouraged.

e There may also be situations where localised extreme events
striking a region by chance miss a measurement gauge = our

single-site model may not take account of such an event!

e |Is there a better way to use the available information to
improve return level estimates? .‘.C

44 /71
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RFA methodology - storm selection

Day t-1 Dayt Day t+1
A Site with rainfall above critical threshold
A Site with rainfall below critical threshold
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RFA methodology - storm selection
Day t-1 Dayt Day t+1
Separated in time
A Storm1
A Storm2 Degree of separation controlled by
Storm 3 parameters in our model —
eor @Uu"’ ;;;;
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RFA methodology - homogeneous region selection
e We now have a set of storms defined, need to convert this to
a set of homogeneous regions.

e To do this we estimate the probability of two sites being
affected by the same storm and repeat for all pairs of sites.

e This set of probabilities can be fed into a Hierarchical
Agglomerative Clustering (HAC) algorithm to suggest a
partition of the sites.

) —)
;i;} @ U gt
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RFA methodology - statistical technique
e Within each region, the most extreme storms are extracted by

applying a second thresholding.

e This threshold u; often chosen to model on average 1
exceedance at each site per year, needs to be chosen high
enough to ensure dependency of storms.

e Within each region, the chosen exceedances are normalised
(i.e. Y; = Xi/u;) and we fit a Generalised Pareto Distribution
to all the exceedances within the region, i.e.

Y; | Yi > 1~ GPD(v, k)

e The distribution at the local site scale can be recovered and
used to estimate extreme return levels, i.e.

X; | Xi > u; ~ GPD(u,-% k)
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Rainfall example

e Data are taken from the
Climate Forecast Services
Reanalysis (CFSR) which are
available from 1979-2016.

58
I

56
I

e Hourly data are available for
a number of different
variables - here hourly rainfall
is accumulated to the daily
scale.

latitude
54
!

e For this study the 0.5° grid
was chosen, to provide

sufficient coverage across the
UK longitude

50
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Rainfall example - Univariate EVA results

& &

e,

Top left: Threshold fixed at 95t quantile
. Top centre: Estimates of scale parameter
m Top right: Estimates of shape parameter
i Bottom left: Estimates of 10,000-year return level

50/71
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Rainfall example - RFA results
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Discussion and Conclusion on RFA

e The range of return level estimates obtained using both
approaches is reasonably consistent.

e \We observe an improvement in the spatial consistency of the
estimates when using RFA.

e However, There are also additional subjective steps in the
methodology which can induce uncertainty.

e There are also some issues near the boundaries of
homogeneous regions.

European
Geotiences
Gt

e |s there a way to create a smoother model across space? <= @U
e!?F
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Bayesian models motivation

e The use of Bayesian extreme value theory can help us to
create a more physically consistent model.

e Bayesian statistics is a branch of statistics named after the
Reverend Thomas Bayes (1701-1761).

e This area of statistics revolves around Bayes' Theorem:

P(6.x) _ P(x | 6)P(6)
P(x) P(x)

P(6 | x) =

 P(0 | x) is called the posterior distribution, P(x | 0) is the
likelihood and P(x) and P(0) are prior distributions. & (E:G-U ****

53 /71
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What does Bayesian statistics mean in practice?

e Previously, we assumed that our data were one realisation of a
sequence generated from the random variable X with
distribution F.

e This realisation was then used to estimate a ‘best set’ of
model parameters with uncertainty bounds to allow for the
sampling uncertainty.

e Now, we have a belief in our parameter 6 expressed through
prior P(0) and we use the observed data x to update this
belief to generate a posterior P(6 | x).

e In our context, this posterior distribution can then be used to
generate a whole distribution of return level estimates. ;‘- (E:GU ,,,,,,,,

54 /71
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can we use Bayesian statistics to improve our RFA
results?

Now we not only model site-by-site using a GPD, but include a
spatial hierarchical model to borrow strength across locations.

This model assumes an underlying spatial process in the
means of the GPD parameters 6; = (log(oy),{) and an
underlying spatial process ¢;, i.e.

6, ~N(X;B+¢j, Tgh)

This type of model can be fitted using Markov Chain Monte
Carlo (MCMC).

But how does this type of model perform in practice?
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Rainfall example - Bayesian model results

Scale (Spatial)

o

Left: Estimates of scale parameter
Centre: Estimates of shape parameter
Right: Estimates of 10,000-year return level

10,000 Year Return Level (Spatial)

References
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Rainfall example - Comparison of all approaches

Single site Spatial Bayesian
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Discussion and Conclusion on Bayesian models

e The Bayesian model developed leads to the most spatially
consistent return level estimates.

e The uncertainty estimates are greatly reduced when compared
to single site EVA and RFA.

e However, this comes at a greater computational cost.

e The methods are currently still in the developmental phase
and are yet to be tested on sparse observation data with
missing values.

e The Bayesian paradigm also presents the opportunity to
incorporate information from experts through the specification

o's

of prior distributions. & v
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Spatial pooling - Summary

e The aim of this part has been to introduce a couple of novel
approaches for improving extreme value characterisation.

e They have the potential to reduce the uncertainty associated
to return level estimation.

e However, these benefits come at an additional computational
cost and require more complicated modelling approaches.
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Clustering of extremes

e Environmental variables have a tendency to form clusters,
e.g. high temperatures caused by anticyclonic conditions.

e When fitting extreme value distributions we make the
assumption that observations are independent.

e If they are not, we risk assuming we have more information
than we actually do and therefore producing uncertainty
bounds that are too narrow.

e Need methods to ensure that modelled data are independent.
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How to account for clustering?

e Partition the data into independent time blocks and take the
maximum of each.

e Leads to the same results as for block maxima approach.

e For each cluster, model only the peak over the threshold as
opposed to all values above the threshold.
e Most commonly used approach.

e Can use more information than for block maxima but can lead
to underestimation.

e Explicitly model the within cluster dependence.

o Permits the use of all values above the threshold.
e Requires multivariate EVA - similar models can be used as
have previously been shown. .
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The extremal index

e One commonly used measure of the amount of clustering is
given by the extremal index 6 € (0, 1] (Leadbetter 1983).

e §# =1 = independence.
e § — 0 = perfect dependence.

e The average number of exceedances is given by the reciprocal
of the measure, i.e. 671.

e Can be estimated empirically as

h_ e _ #{Clusters}
~n,  #{Exceedances of u}

e Number of clusters can be estimated via the runs method or
intervals method. o @Um ‘‘‘‘‘‘
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Explicitly modelling temporal dependence

e Some initial work has been undertaken to explicitly model the
extremal dependence over time.

e Multivariate EVA models are used but instead the aim is to
model X¢+1|X; > u and so on.

e Winter & Tawn (2016) used the conditional extremes
approach to model the dependence between consecutive
values to estimate the probability of heatwaves.

e This has been extended for higher-order processes (Winter &
Tawn 2017).
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Non-stationarity in extremes

e In many situations data are not stationary:
e Heavier rainfall in summer than winter.
e Climate change leading to hotter temperatures.

e Standard univariate methods may perform poorly.
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How to account for non-stationarity?

e Directly in model parameters. For a covariate y and GEV
would have

ply) = o+ py
o(y) = exp (oo + o1y)
E(y) =&+ &y

e By pre-processing the data first to remove non-stationarity
and then applying stationary EVA (Eastoe & Tawn 2009).

e Use variable threshold (Northrop & Jonathan 2011).
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Concluding remarks
| hope that this course has given a basic overview of EVA and
more advanced techniques that are currently being developed.

This area of statistics is seen as a vital skill across industry to
estimate the risks posed by natural hazards.

The go-to introductory book is still Coles (2001).

Many packages are now out there (especially within R) to do
this type of analysis.

If you have any questions off the back of the course, feel free
to get in touch.
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