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Introduction

• This is not:

– An introduction to a software package

– Nor a set of recipes how to …

• It is an introduction to 

– Why we use geostatistics

– What is important what is not

– What is good and what is not
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Books

An Introduction to Applied Geostatistics
(Isaaks and Srivastava)

Mining Geostatistics
(Journel and Huijbregts)

Geostatistics for natural resources evaluation
(Goovaerts)
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Software

SgeMS    
(Stanford Geostatistical Modelling Software)

GEOEAS
(Geostatistical Environmental Assessment Software)

GSLIB
(Geostatistical Software Library)

ArcGIS                        Geostatistical Analyst
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God does not play dice.   (Albert Einstein)

Quantum mechanics

Draw of lottery numbers ?

Our case – we do not even know the exact 

circumstances of the processes.
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The problem

• Discrete observations (points and blocks) 

• Unknown in between

• Generating processes 

– Physical, chemical, biological

– Circumstances, inputs … unknown

• Uncertainty – assumptions related to 

uncertainty
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The problem

• We do not know reality

• But:

– We can use methods of statistics

– Deriving certain measures from observations

– Applying a stochastic “analogue”

• We assume that what is observed is like the 

realization of a stochastic process

Mixture of structure and randomness
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Intrinsic hypothesis

1.The expected value of the random function 

Z(u) is constant all over the domain D

2.The variance of the increment corresponding 

to two different locations depends only on 

the vector separating them
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Intrinsic hypothesis

• These conditions can be formulated as:

• And for the increments

















The variogram

1. (0)=0

2. (h) > 0,  for all vectors h

3. (h)  (-h),  for all vectors h 

4. variance of the increments is supposed to increase with the 

length of the vector h  

5. limit in the continuity of the parameter, vector separating two 

points exceeds a certain limit the variance of the increment 

will not increase any more

6. The variogram is often discontinuous near the origin. For any 

h>0 we have  (h)>C0 >0, nugget effect.



Experimental variogram

• Variogram can be estimated with the help of the following formula
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Allowing a certain difference in both the 

angle and the length of vector 



Experimental variogram
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Estimation variogram  Cl
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Point kriging
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Estimation variance using the variogram

• Minimize estimation variance:
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Kriging equations using variogram



This is an analogy

• Is it better than others? (NN,ID)

– Rational:

• Distinguishes between variables (variograms)

• Good properties 

– Data configurations are reflected

– Testing: 

• Estimates using cross validation:

– Leave some out and estimate them using the rest

– Compare estimated and observed

• Uncertainty using confidence intervals (CI)

– Leave some out and estimate them using the rest

– Where is the observed in the estimated CI
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Precipitation cross validation 

Normed squared error for unused stations for 

each method and different time aggregations:
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Is good also true?

• Interpolation is a good estimator

– Is the obtained map the truth?

• NO NO NO NO NO ….

• It is the “best” estimate but

• Impossible as it has different properties as 

observations

– Smooth – lower variance and variogram

– Consequence  Problems for risk assessment 
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Support

• Observations correspond to a certain area 

or volume

• These may differ 

– Measurement devices

– Sampling techniques

• Distribution of values change when support 

changes !!
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• Different supports:

– Different marginal distributions

– Increase of support  decrease of variance

– Different variongrams

• Do not mix them for:

– Variogram calculation

• You can mix for interpolation

– Block Kriging
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Alternate realities

• Interpolation is not a possible reality

• Generate realities:

– Same variogram

– Same observations

– Matching other statistics

• Consequence

– Simulation error is higher than interpolation 

error

– Variability is realistic (?) thus good for 

nonlinear cases (Risk assessment)
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Simulation methods

• Using different assumptions

– LR Cholewsky decomposition

– Turning bands

– Fast Fourier Transform

– Sequential Simulations

– Simulated Annealing

…

Uncertainty validation is necessary!
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Goals

Interpolation                                                  

Simulation
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Thank you for your attention!


