Hydroinformatics for hydrology: data-driven and hybrid techniques

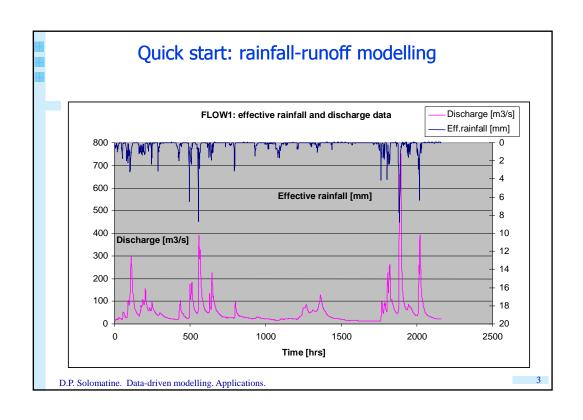
Dimitri P. Solomatine

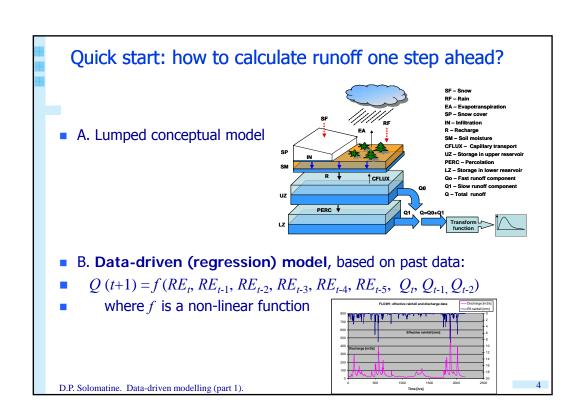
UNESCO-IHE Institute for Water Education
Hydroinformatics Chair

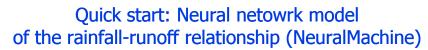
Outline of the course

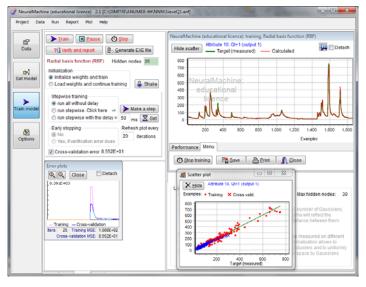
- Notion of data-driven modelling (DDM)
- Data
- Introduction to some methods
- Combining models hybrid models
- Demonstration of applications
 - Rainfall-runoff modelling
 - Reservoir optimization

 $D.P.\ Solomatine.\ \ Data-driven\ modelling\ (part\ 1).$









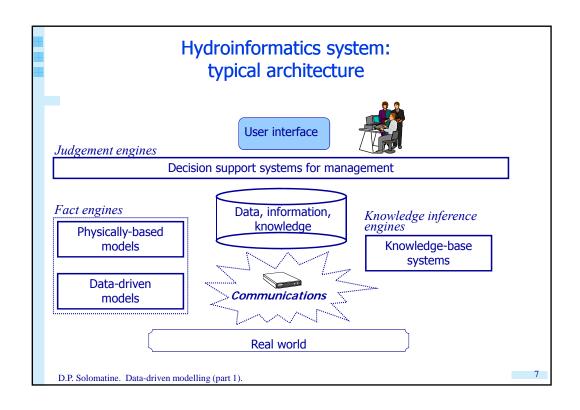
D.P. Solomatine. Data-driven modelling (part 1).

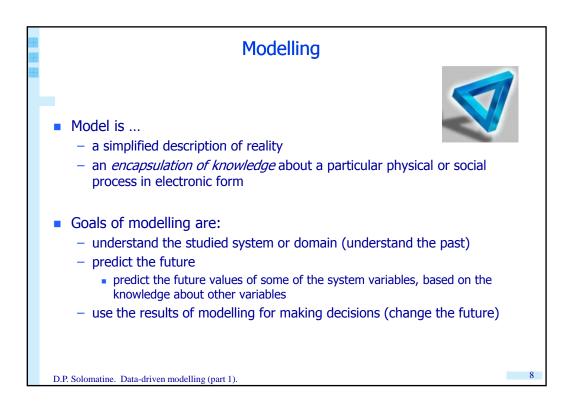
Why data-driven now?

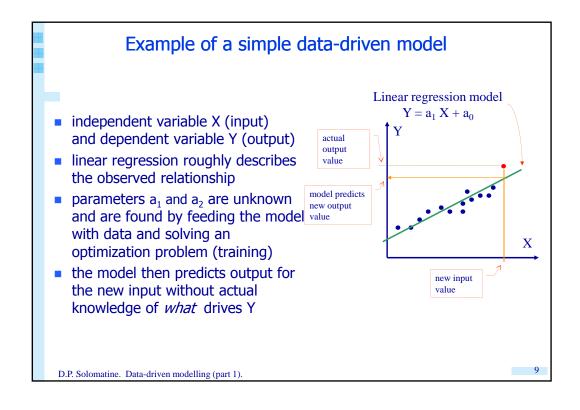
- Measuring campaigns using automatic computerised equipment: a lot of data became available
- important breakthroughs in computational intelligence and machine learning methods
- penetration of "computer sciences" into civil engineering (e.g., hydroinformatics, geo-informatics etc.)

D.P. Solomatine. Data-driven modelling (part 1).

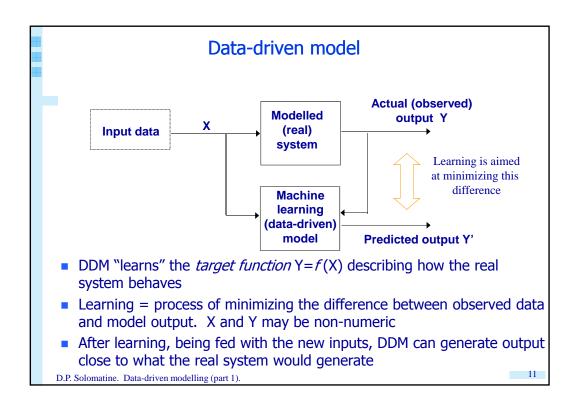
•3







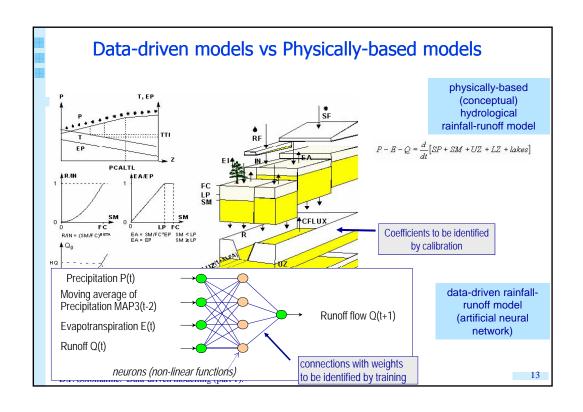
Data: attributes, inputs, outputs set K of examples (or instances) represented by the duple $\langle \mathbf{x}_{kr} \mathbf{y}_{k} \rangle$, where k = 1,..., K, vector $\mathbf{x}_k = \{x_1, ..., x_n\}_k$, vector $\mathbf{y}_k = \{y_1, ..., y_m\}_k$, n = number of inputs, m = number of outputs. The process of building a function ('model') y = f(x) is called *training*. • Often only one output is considered, so m = 1. **Measured data Attributes** Model output $y^* = f(x)$ Output **Inputs Instances** \boldsymbol{X}_1 X_{2} \boldsymbol{X}_{n} Instance 1 *X*₁₁ *X*₁₂ X_{1n} y_1 Instance 2 **X**2<u>n</u> X_{21} *X*₂₁ y_2 y_K^* Instance K X_{Kn} y_K 10 D.P. Solomatine. Data-driven modelling (part 1).

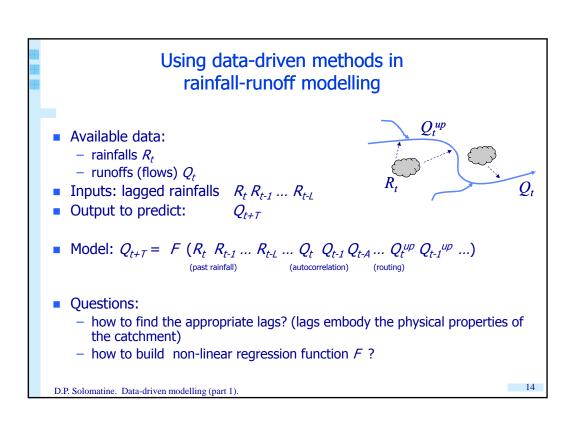


Data-driven models vs Knowledge-driven (physically-based) models (1)

- "Physically-based", or "knowledge-based" models are based on the understanding of the underlying processes in the system
 - examples: river models based on main principles of water motion, expressed in differential equations, solved using finite-difference approximations
- "Data-driven" model is defined as a model connecting the system state variables (input, internal and output) without much knowledge about the "physical" behaviour of the system
 - examples: regression model linking input and output
- Current trend: combination of both ("hybrid" models)

D.P. Solomatine. Data-driven modelling (part 1).





Steps in modelling process: details

- State the problem (why do the modelling?)
- Evaluate data availability, data requirements
- Specify the modelling methods and choose the tools
- Build (identify) the model:
 - Choose variables that reflect the physical processes
 - Collect, analyse and prepare the data
 - → Build the model
 - Choose objective function for model performance evaluation
 - Calibrate (identify, estimate) the model parameters:
 - if possible, maximize model performance by comparing the model output to past measured data and adjusting parameters
- Evaluate the model:
 - Evaluate the model uncertainty, sensitivity
 - Test (validate) the model using the "unseen" measured data
- Apply the model (and possibly assimilate real-time data)
- Evaluate results, refine the model

D.P. Solomatine. Data-driven modelling (part 1).

15

Suppliers of methods for data-driven modelling

- Statistics
- Machine learning
- Soft computing (fuzzy systems)
- Computational intelligence
- Artificial neural networks
- Data mining
- Non-linear dynamics (chaos theory)

D.P. Solomatine. Data-driven modelling (part 1).

Suppliers of methods for data-driven modelling (1) Machine learning (ML)

- ML = constructing computer programs that automatically improve with experience
- Most general paradigm for DDM
- ML draws on results from:
 - statistics
 - artificial intellingence
 - philosophy, psychology, cognitive science, biology
 - information theory, computational complexity
 - control theory
- For a long time concentrated on categorical (non-continuous) variables

D.P. Solomatine. Data-driven modelling (part 1).

17

Suppliers of methods for data-driven modelling (2) Soft computing

- Soft computing tolerant for imprecision and uncertainty of data (Zadeh, 1991). Currently includes almost everything:
 - fuzzy logic
 - neural networks
 - evolutionary computing
 - probabilistic computing (incl. belief networks)
 - chaotic systems
 - parts of machine learning theory

 $D.P.\ Solomatine.\ \ Data-driven\ modelling\ (part\ 1).$

Suppliers of methods for data-driven modelling (3) Data mining

- Data mining (preparation, reduction, finding new knowledge):
 - automatic classification
 - identification of trends (eg. statistical methods like ARIMA)
 - data normalization, smoothing, data restoration
 - association rules and decision trees
 - IF (WL>1.2 @3 h ago, Rainfall>50 @1 h ago) THEN (WL>1.5 @now)
 - neural networks
 - fuzzy systems
- Other methods oriented towards optimization:
 - automatic calibration (with a lot of data involved, makes a physically-driven model partly data-driven)

D.P. Solomatine. Data-driven modelling (part 1).

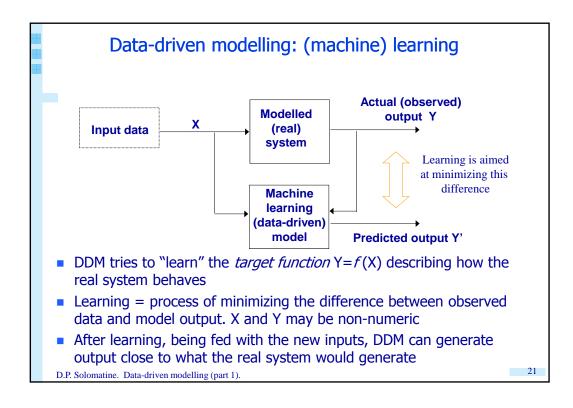
D.P. Solomatine. Data-driven modelling (part 1).

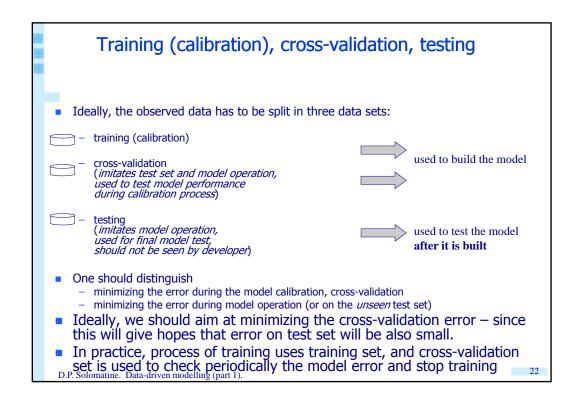
19

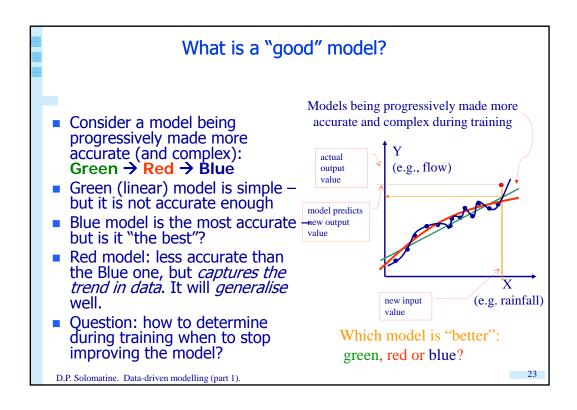
20

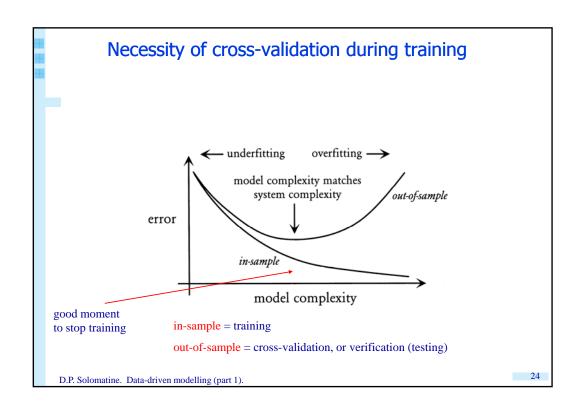
Machine learning: Learning from data

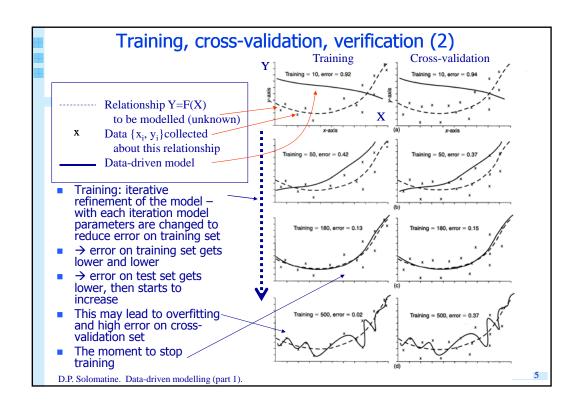
•10

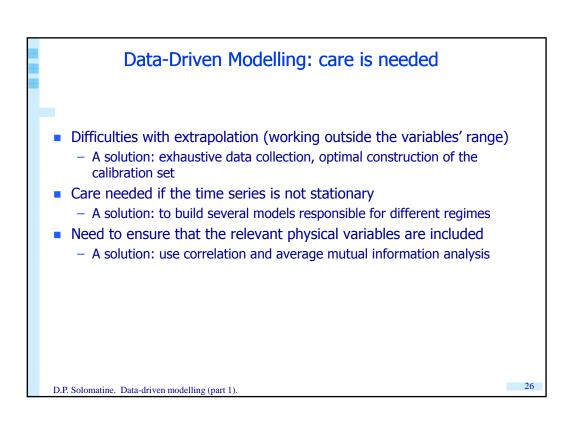


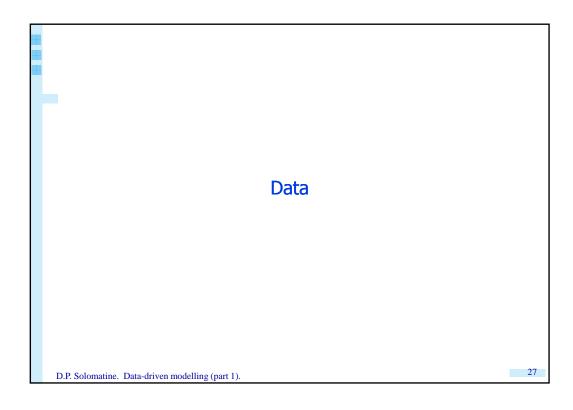












Data: attributes, inputs, outputs

- set K of examples (or instances) represented by the duple $\langle \mathbf{x}_k, \mathbf{y}_k \rangle$, where k = 1, ..., K, vector $\mathbf{x}_k = \{x_1, ..., x_n\}_k$, vector $\mathbf{y}_k = \{y_1, ..., y_m\}_k$, n = number of inputs, m = number of outputs.
- The process of building a function ('model') y = f(x) is called *training*.
- Often only one output is considered, so m = 1.

Measured data		A	ttrib	Model output			
	Inputs				Output	$y^* = f(x)$	
Instances	X ₁	x ₂		X _n	y	y *	
Instance 1	<i>X</i> ₁₁	<i>X</i> ₁₂		<i>X</i> _{1<i>n</i>}	\mathcal{Y}_1	<i>Y</i> ₁ *	
Instance 2	<i>X</i> ₂₁	<i>X</i> ₂₁		X _{2 n}	<i>y</i> ₂	<i>Y</i> ₂ *	
Instance K	<i>X</i> _{K1}	X _{K2}		X_{Kn}	y_K	<i>y_K</i> *	

Types of data (roughly)

- Class (category, label)
- Ordinal (order)
- Numeric (real-valued)
- etc. (not considered here)
- (Time) series data: numerical data which values have associated index variable with it.

 $D.P.\ Solomatine.\ \ \underline{Data-driven}\ \underline{modelling}\ (part\ 1).$

29

Four styles of learning

- Classification
 - on the basis of classified examples, a way of classifying unseen examples is to be found
- Association
 - association between features (which combinations of values are most frequent) is to be identified
- Clustering
 - groups of objects (examples) that are "close" are to be identified
- Numeric prediction
 - outcome is not a class, but a numeric (real) value
 - often called *regression*

 $D.P.\ Solomatine.\ \ Data-driven\ modelling\ (part\ 1).$

Instances (examples)

- Instances = examples of input data.
- Instances that can be stored in a simple rectangular table (only these will be mainly considered):
 - individual unrelated customers described by a set of attributes
 - records of rainfall, runoff, water level taken every hour
- Instances that cannot be stored in a table, but require more complex structures:
 - instances of pairs that are sisters, taken from a family tree
 - related tables in complex databases describing staff, their ownership, involvement in projects, borrowing of computers, etc.

D.P. Solomatine. Data-driven modelling (part 1).

31

Data preparation results in:

- training data set raw data is presented in a form necessary to to train the DDM;
- cross-validation data set needed to detect overtraining;
- testing, or validation data set it is needed to validate (test) the model's predictive performance;
- algorithms and software to perform pre-processing (eg., normalization);
- algorithms and software to perform post-processing (eg., denormalization).

 $D.P.\ Solomatine.\ \ Data-driven\ modelling\ (part\ 1).$

Important steps in data preparation

- Replace missing, empty, inaccuarate values
- Handle issue of spatial and temporal resolution
- Linear scaling and normalization
- Non-linear transformations
- Transform the distributions
- Time series:
 - Fourier and wavelet transforms
 - Identification of trend, seasonality, cyles, noise
 - Smoothing data
- Finding relationships between attributes (eg. correlation, average mutual information - AVI)
- Discretizing numeric attributes into {low, medium, high}
- Data reduction (Principal components analysis PCA)

D.P. Solomatine. Data-driven modelling (part 1).

33

Replacing missing and empty values

- What to do with the outliers? How to reconstruct missing values?
- Estimator is a device (algorithm) used to make a justifiable guess about the value of some particular variable, that is, to produce an estimate
- Unbiased estimator is a method of guessing that does not change important characteristics of the data set when the estimates are included with the existing values
- Example: Dataset 1 2 3 x 5
 - Estimators:
 - 2.750, if the mean is to be unbiased;
 - 4.659, if the standard deviation is to be unbiased;
 - 4.000, if the step-wise change in the variable value (trend) is to be unbiased (that is, linear interpolation is used $x_i = (x_{i+1} + x_{i+1})/2$)

D.P. Solomatine. Data-driven modelling (part 1).

Issue of spatial and temporal resolution

Examples:

- in a harbour sedimentation is measured once in two weeks at one locations and once a month at other two locations, and never at other (maybe important) locatons
- in a catchment the rainfall data that was manually collected at a three gauging stations for 20 years once a day, and 3 years ago the measurements started also at 4 new automatic stations as well, with the hourly frequency

Solutions:

- filling-in missing data
- introducing an artificial resolution being equal to the maximum for all variables

 $D.P.\ Solomatine.\ \ \underline{Data-driven\ modelling\ (part\ 1)}.$

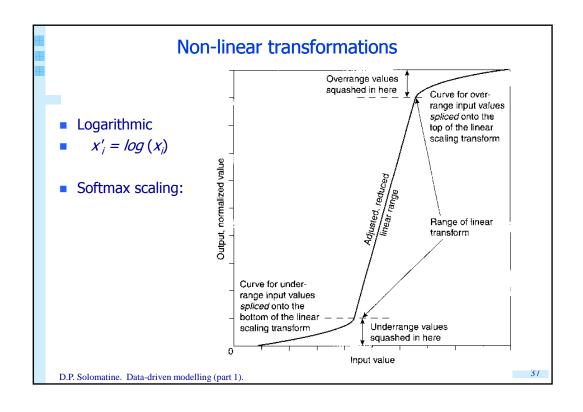
35

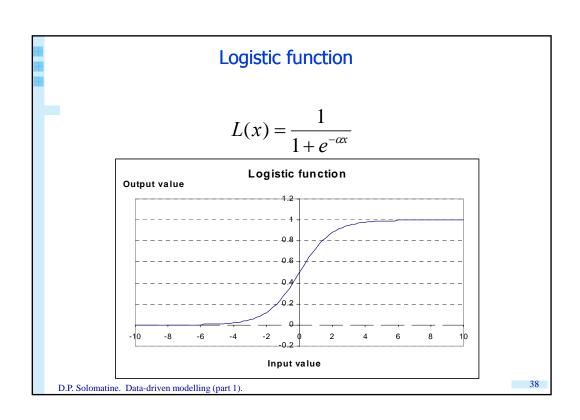
Linear scaling and normalization

- General form:
 - $x'_i = a x_i + b$
- to keep data positive:
- $x'_i = x_i + min(x_1...x_n) + SmallConst$
- Squashing data into the range [0, 1]

$$x_i' = \frac{x_i - \min(x_1...x_n)}{\max(x_1...x_n) - \min(x_1...x_n)}$$

D.P. Solomatine. Data-driven modelling (part 1).

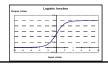




Softmax function

$$x_i' = \frac{x_i - E(x)}{\lambda \left(\sigma_x / 2\pi\right)}$$

- where
- E(x) is mean value of variable x;
- $-\sigma_x$ is the standard deviation of variable x,
- $-\lambda$ is linear response measured in standard deviations for example $\pm \sigma$ (that is σ on either side of the central point of the distribution) cover 68% of the total range of x, $\pm 2\sigma$ cover 95.5%, $\pm 3\sigma$ cover 99.7%.
- $-\pi \approx 3.14$
- 2. logistic function applied L(x')



D.P. Solomatine. Data-driven modelling (part 1).

Transforming the distributions: Box-Cox transform

The first step uses the power transform to adjust the changing variance:

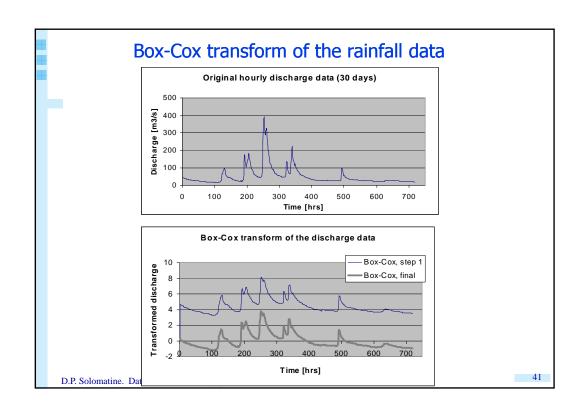
$$x_i' = \frac{x_i^{\lambda} - 1}{\lambda}$$

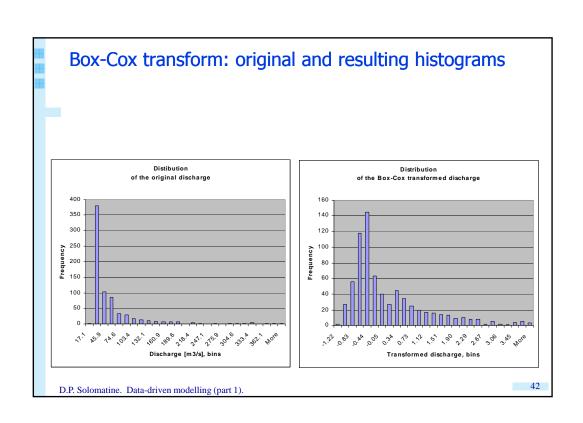
- where
 - x_i is the original value,
 - x'_i is the transformed value,
 - λ is a user-selected value.
- The second step balances the distribution by subtracting the mean and dividing the result by the standard deviation:
 - where

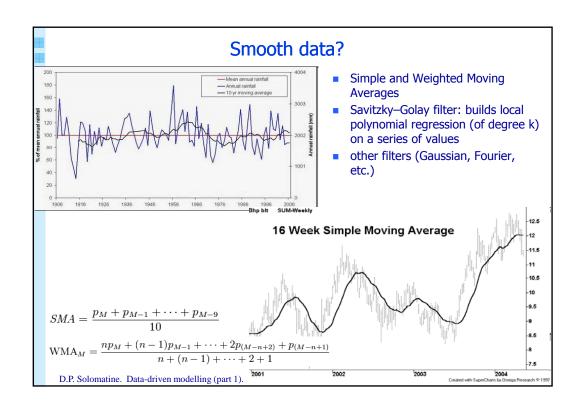
where
$$x_i'' = \frac{x_i' - E(x')}{\sigma_{x'}}$$
• x_i'' is the value after the first transform,

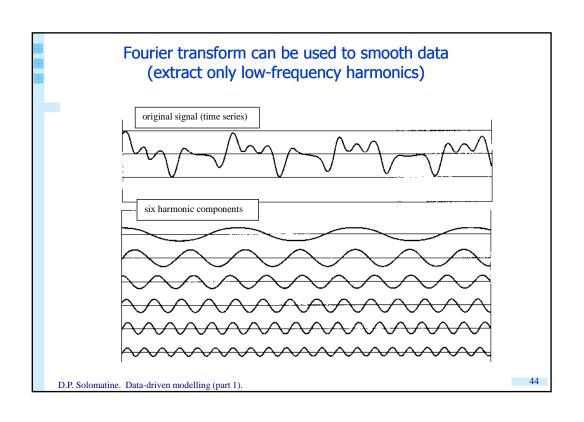
- x"_i is (final) standardized value,
- E(x') is mean value of variable x'
- $\sigma_{x'}$ is standard deviation of variable x'.

D.P. Solomatine. Data-driven modelling (part 1).









Finding relationships between i/o variables

Correlation coefficient R

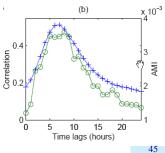
$$R = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

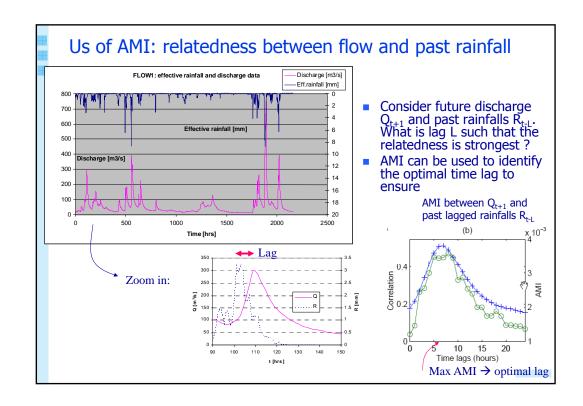
Average mutual information (AMI). It represents the measure of information that can be learned from one set of data having knowledge of another set of data.

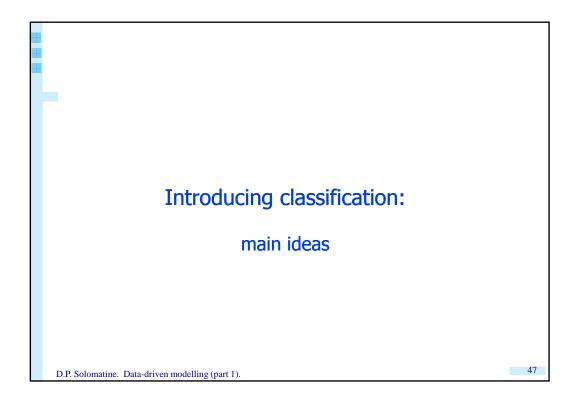
$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} P(x,y) \log_2 \left[\frac{P(x,y)}{P(x)P(y)} \right]$$

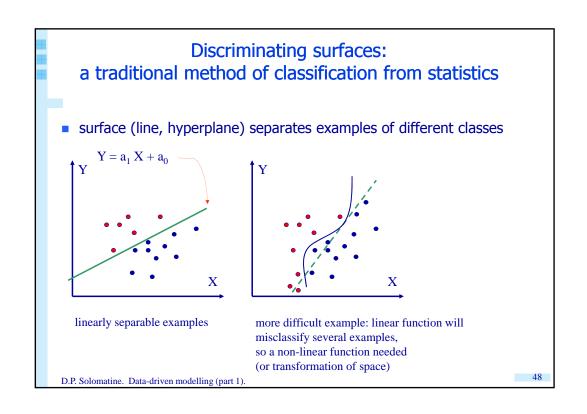
- where P(x,y) is the joint probability for realisation x of X and y of Y; and P(x) and P(y) are the individual probabilities of these realisations
- If X is completely independent of Y then AMI I (X;Y) is zero.

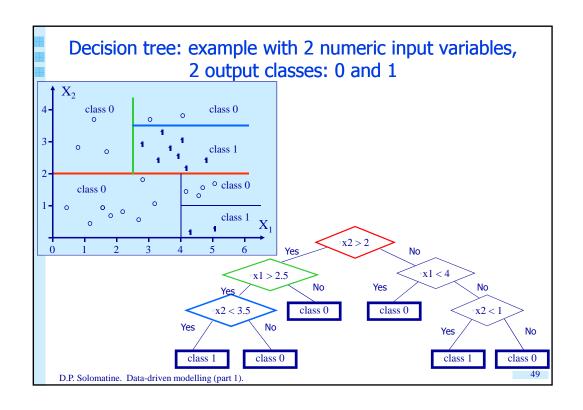
AMI can be used to identify the optimal time lag for a datadriven rainfall-runoff model

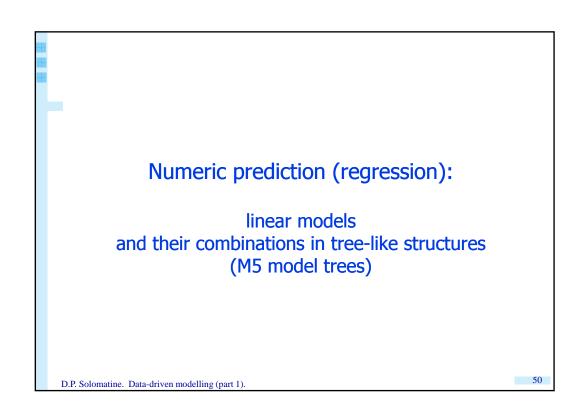










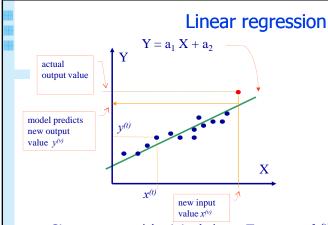


Models for numeric prediction

- Target function is real-valued
- There are many methods:
 - Linear and non-linear regression
 - ARMA (auto-regressive moving average) and ARIMA models
 - Artificial Neural Networks (ANN)
- ⇒ We will consider now:
 - Linear regression
 - Regression trees
 - Model trees

D.P. Solomatine. Data-driven modelling (part 1).

51



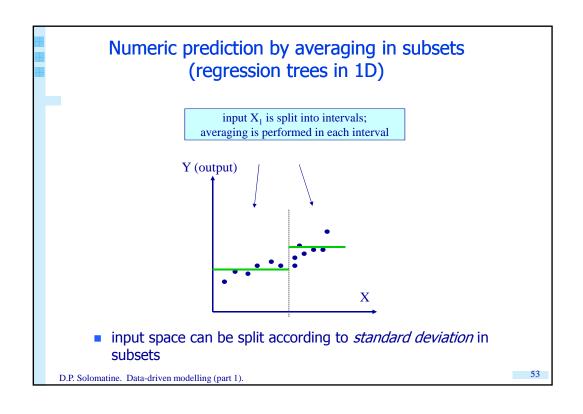
- Given measured (training) data: T vectors $\{x^{(t)}, y^{(t)}\}$, t = 1, ..., T.
- Unknown a_1 and a_2 are found by solving an optimization problem

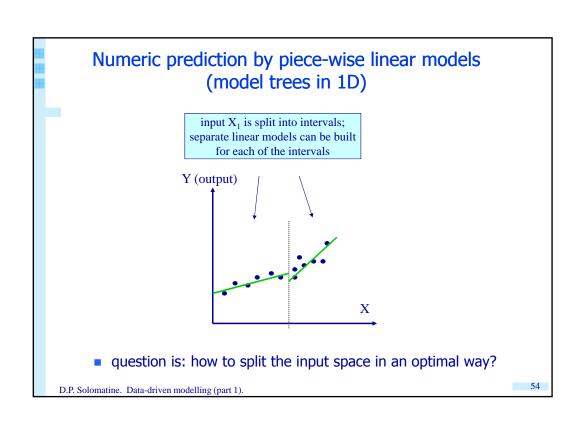
$$E = \sum_{t=1}^{T} (y^{(t)} - (a_0 + a_1 x^{(t)}))^2 \to \min$$

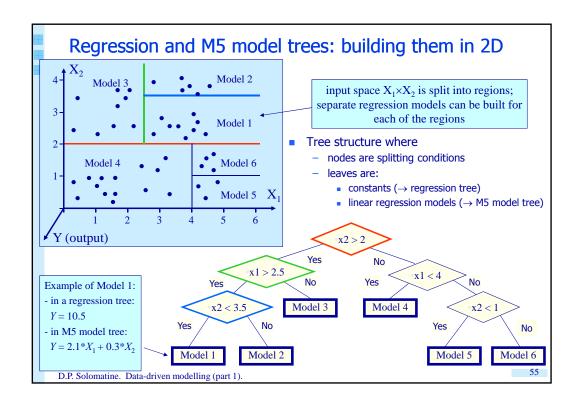
■ Then for the new V vectors $\{x^{(v)}\}$, v = 1,...V this equation can approximately reproduce the corresponding functions values

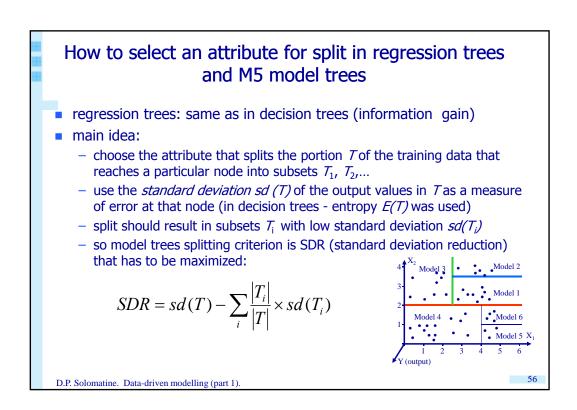
$$\{y^{(v)}\}, v = 1,...V$$

D.P. Solomatine. Data-driven modelling (part 1).









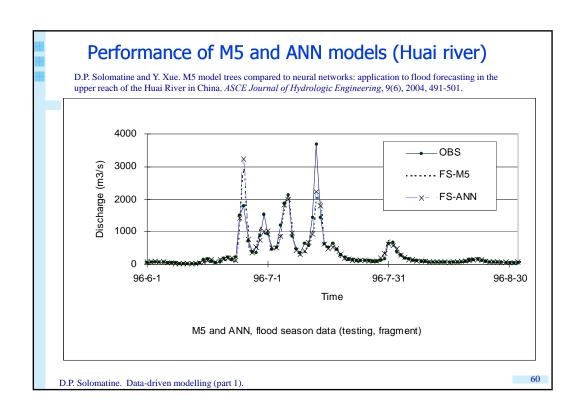
Regression and model trees in numerical prediction: some applications

D.P. Solomatine. Data-driven modelling (part 1).

57

M5 tree in Rainfall-runoff modelling (Huai river, China) Model structure: $Q_{t+T} = F(R_t \ R_{t-1} \dots R_{t-L} \dots \ Q_t \ Q_{t-1} \ Q_{t-A} \dots Q_t^{up} \ Q_{t-1}^{up} \dots)$ Variables considered Output: predicted discharge QX_{t+1} Inputs (with different time lags): - daily areal rainfall (Pa) - moving average of daily areal rainfall (*PaMov*) - discharges (QX) and upstream (QC) Rainfall station Hydrological stat Smoothed variables have higher correlation coeff. with the output, e.g. 2-day-moving average of rainfall (PaMov2_t) Final model for the flood season: Output: Data (1976-1996) discharge the next day QX_{t+1} Daily discharges (*QX, QC*) Daily rainfall at 17 stations Inputs: $\begin{array}{lll} \textit{Pa}_t & \textit{Pa}_{t-1} & \textit{PaMov2}_t & \textit{PaMov2}_{t-1} \\ \textit{QC}_t & \textit{QC}_{t-1} & \textit{QX}_t \end{array}$ Daily evaporation for 14 years (1976-1989) at 3 stations Techniques used: M5 model trees, ANN Training data: 1976-89 Cross-valid. & testing: 1990-96 D.P. Solomatine. Data-driven modelling (part 1). 58

```
Resulting M5 model tree with 7 models (Huai river)
             PaMov2t > 4.5 :
                PaMov2t <= 18.5 : LM2 (315/15.9%)
                PaMov2t > 18.5 : LM3 (91/86.9%)
         OXt > 154 :
            PaMov2t-1 <= 13.5 :
                PaMov2t <= 4.5 : LM4 (377/15.9%)
                PaMov2t > 4.5 : LM5 (109/89.7%)
             PaMov2t-1 > 13.5 :
                 PaMov2t <= 26.5 : LM6 (135/73.1%)
                 PaMov2t > 26.5 : LM7 (49/270%)
                           Models at the leaves:
                  QXt+1 = 2.28 + 0.714PaMov2t-1 - 0.21PaMov2t + 1.02Pat-1 + 0.193Pat
                           - 0.0085QCt-1 + 0.336QCt + 0.771QXt
                  QXt+1 = -24.4 - 0.0481PaMov2t-1 - 4.96PaMov2t + 3.91Pat-1 + 4.51Pat
             LM2:
                           - 0.363QCt-1 + 0.712QCt + 1.05QXt
                  QXt+1 = -183 + 10.3PaMov2t-1 + 8.37PaMov2t - 5.32Pat-1 + 1.49Pat
                           - 0.01930Ct-1 + 0.1060Ct + 2.160Xt
                  QXt+1 = 47.3 + 1.06PaMov2t-1 - 2.05PaMov2t + 1.91Pat-1 + 4.01Pat
                           - 0.3QCt-1 + 1.11QCt + 0.383QXt
                   QXt+1 = -151 - 0.277PaMov2t-1 - 37.8PaMov2t + 31.1Pat-1 + 30.3Pat
                           - 0.672QCt-1 + 0.746QCt + 0.842QXt
                   QXt+1 = 138 - 5.95PaMov2t-1 - 39.5PaMov2t + 29.6Pat-1 + 35.4Pat
                           - 0.303QCt-1 + 0.836QCt + 0.461QXt
                   QXt+1 = -131 - 27.2PaMov2t-1 + 51.9PaMov2t + 0.125Pat-1 - 5.29Pat
                           0.0941QCt-1 + 0.557QCt + 0.754QXt
                                                                                              59
D.P. Solomatine. Data-driven modelling (part 1).
```



M5 model trees and ANNs in rainfall-runoff modelling: predicting flow three hours ahead (Sieve catchment)

The model:
$$Q_{t+3} = f$$
 (RE_t, RE_{t-1}, RE_{t-2}, RE_{t-3}, Q_t , Q_{t-1})

RE_{t-1}, RE_{t-1}, RE_{t-2}, RE_{t-3}, Q_t , Q_{t-1} (rainfall for 3 past hours, runoff for 2)

ANN verification RMSE=11.353

NRMSE=0.234

COE=0.9452

MT verification RMSE=12.548

NRMSE=0.258

COE=0.9331

D.P. Solomatine. Data-driven modelling (part 1).

Numerical prediction by M5 model trees: conclusions Transparency of trees: model trees is easy to understand (even by the managers) M5 model tree is a mixture of local accurate models Pruning (reducing size) allows: to prevent overfitting to generate a family of models of various accuracy and complexity